Knowledge fuels change - Support energypedia!
For over 10 years, energypedia has been connecting energy experts around the world — helping them share knowledge, learn from each other, and accelerate the global energy transition.
Today, we ask for your support to keep this platform free and accessible to all. Even a small contribution makes a big difference! If just 10–20% of our 60,000+ monthly visitors donated the equivalent of a cup of coffee — €5 — Energypedia would be fully funded for a whole year.
Is the knowledge you’ve gained through Energypedia this year worth €5 or more?
Your donation keeps the platform running, helps us create new knowledge products, and contributes directly to achieving SDG 7.


Donate now and support open access to energy expertise

Thank you for your support, your donation, big or small, truly matters!

Toolbox Entry: Recommendations for Trust and Encryption in DER Interoperability Standards

From energypedia

► Back to the Toolbox

Last edited on 27/11/2022 by Hector Alfaro
(Date format: DD/MM/YYYY)

General Information

ID Number
65
Main Author
Sandia National Laboratories
Publication Year
2019
Type of Entry
Study Report







Information Exchange
  • Interoperability and communication
  • Cybersecurity
Which of the above categories best describe the material
Information exchange
Geographical Scope of the Publication
United States of America


File



URL
Abstract
Recently developed Distributed Energy Resource (DER) interoperability standards include communication and cybersecurity requirements. In 2018, the US national interconnection standard, IEEE 1547, was revised to require DER to include a SunSpec Modbus, IEEE 2030.5 (Smart Energy Profile, SEP 2.0), or IEEE 1815 (DNP3) communication interface but does not include any normative overarching cybersecurity requirements. IEEE 2030.5 and associated implementation requirements for California, known as the California Smart Inverter Profile (CSIP), prescribe the greatest security features—including encryption, authentication, and key management requirements. SunSpec Modbus and IEEE 1815 security requirements are not as comprehensive, leading to implementation questions throughout the industry. In this paper, (a) the elements of IEEE 2030.5 encryption, authentication, and key management guidelines are analyzed, (b) potential scalability gaps are identified, and (c) alternative technologies are explored for possible inclusion in DER interoperability or cybersecurity standards.