Greece Energy Situation

From energypedia
Revision as of 13:10, 26 September 2016 by ***** (***** | *****)
Flag of .png

Capital:

Region:

Coordinates:

Total Area (km²): It includes a country's total area, including areas under inland bodies of water and some coastal waterways.

131,960

Population: It is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship--except for refugees not permanently settled in the country of asylum, who are generally considered part of the population of their country of origin.

10,405,588 (2023)

Rural Population (% of total population): It refers to people living in rural areas as defined by national statistical offices. It is calculated as the difference between total population and urban population.

19 (2023)

GDP (current US$): It is the sum of gross value added by all resident producers in the economy plus any product taxes and minus any subsidies not included in the value of the products. It is calculated without making deductions for depreciation of fabricated assets or for depletion and degradation of natural resources.

243,498,333,238 (2023)

GDP Per Capita (current US$): It is gross domestic product divided by midyear population

23,400.73 (2023)

Access to Electricity (% of population): It is the percentage of population with access to electricity.

100.00 (2022)

Energy Imports Net (% of energy use): It is estimated as energy use less production, both measured in oil equivalents. A negative value indicates that the country is a net exporter. Energy use refers to use of primary energy before transformation to other end-use fuels, which is equal to indigenous production plus imports and stock changes, minus exports and fuels supplied to ships and aircraft engaged in international transport.

64.18 (2015)

Fossil Fuel Energy Consumption (% of total): It comprises coal, oil, petroleum, and natural gas products.

82.57 (2015)

Source: World Bank



Introduction

The Greek energy sector is still largely dependent on fossil fuels, most of which are imported. About 54% of its energy requirements are covered by petroleum products alone, compared to an average of 33.4% at the EU level. These petroleum products are not only used in the transport sector, but they are also converted in relevant amounts into electricity. In particular, the non-interconnected Greek islands obtain their electricity primarily from inefficient and expensive diesel generators. In total, the extra cost that has to be recovered through a public service obligation accounted for around 771 m € for the year 2013 to subsidise the electricity tariffs in those areas. Natural gas, which also has to be imported at a significant cost, plays a growing role in meeting energy requirements.

Domestic energy sources include lignite which accounts for around 50% of electricity generation as well as renewable energy sources (RES) such as hydro-power, wind, solar energy and biomass. RES currently account for 15.4% of gross final energy consumption. A national target of a 20% share in gross final energy consumption by 2020 has been defined under Law 3851/2010, exceeding the national target of 18% according to the EU Directive 2009/28/EC. The specific trajectory for achieving this target is presented in the National Renewable Energy Action Plan (NREAP) of 2010. Specific targets for RES electricity share (40%), RES heating and cooling share (20%), and RES transport share (10%) have been defined in order to achieve the national RES target until 2020. This target is supposed to be achieved through a combination of measures for energy efficiency and the large-scale penetration of RES technologies in electricity production, heat supply and transport sector.

The outcomes of the energy sector modelling carried out in the scope of compiling the Greek NREAP demonstrated that a near tripling of the contribution of RES plants in power generation is necessary for meeting the 2020 targets which requires the further development of different RES technologies in the sectors of electricity, heat and cooling, and transport. These figures are however currently being revised in the context of the national energy planning, taking into consideration the lower than expected levels of energy consumption due to the economic crisis as well as the differences between the NREAP and the actual development of different RES technologies.

A number of significant reforms aiming at a further liberalization of the energy sector, its integration with neighbouring countries and the reform of energy markets are currently being implemented. In addition, the Greek support scheme for electricity production from RES is currently undergoing a major transition in order to improve the integration of RES in electricity market and to ensure conformity with requirements under EU state aid regulations. There are also plans for large infrastructure projects in the electricity, gas and petroleum sector that are supposed to strengthen Greece’s position as an energy hub in the South-East of Europe.

►Go to Top


Energy Supply

Primary Energy

Around 61% of Greece’s energy needs are covered through imports with the remaining 39% being covered through national energy sources, mainly lignite (77%) and RES (22%). Imported energy sources are mainly petroleum products that account for 44% of total energy consumption and natural gas with a share of around 13%.

►Go to Top


Electricity generation

According to the Greek Electricity Market Operator (LAGIE), the total installed capacity in the Greek interconnected system at the end of 2015 accounted for almost 18,087 MW, including 4,456 MW lignite, 698 MW oil-fired plants, 5,170 MW natural gas, 3,173 MW large hydro-power and 4,590 MW RES. The total electricity generation in the Greek interconnected system for the year 2015 amounted to almost 41.2 TWh. An additional 9.4 TWh of electricity was imported. Lignite accounted for 49% of electricity generation in the interconnected system, natural gas for 20.2%, and RES (including large hydro-power) for 30.5%. According to theHellenic Electricity Distribution Network Operator (HEDNO),on the non-interconnected islands (NII), the diesel-driven generators’ capacity was 1,753 MW by December 2015, producing a total of 323 MWh. The renewable energy share in the electricity mix of the NII was 19%, which equals a production of 90,049 MWh and an installed capacity of 453 MW.

During the year 2015, an additional capacity of 121 MW of RES has been installed in Greece, including 113 MW of wind energy and 8 MW of photovoltaic energy. The total installed capacity and electricity production from roof-top PV systems under the Special Program at the end of 2015 amounted to 375 MW and 494 GWh, respectively.

►Go to Top


Energy Consumption

Electricity


Gross national electricity consumption in 2015 was roughly 50.5 TWh, including transmission and distribution losses of about 2.9%. The annual peak load in the interconnected system currently stands at around 9,659 MW.

The average cost of RES electricity production in 2015 was around 162.7 €/MWh, down from 200 €/MWh in 2014. This has been mainly due to the adjustment of feed-in tariffs (FIT) in April 2014 that have been implemented in the context of Law 4254/2014. The RES cost compares to an average electricity system marginal price (SMP) of 51.94 €/MWh for the year 2015 (57.6 €/MWh in 2014). As reported by Eurostat, electricity tariffs in 2015 for final consumers in Greece were on average 177 €/MWh for medium-size households (including 56 €/MWh or 32% for taxes and levies) and 129 €/MWh for medium-size industrial companies (including a share of 19.7% for taxes and levies).

►Go to Top


Market Situation for Renewable Energies

Solar Energy

Solar energy is playing an increasingly important part in the energy mix of Greece. The country has high levels of solar irradiation with an average global horizontal irradiation level of more than 1,500 kWh/m2. With around 4.1 million m2 (2.9 GWth) of solar thermal systems installed, Greece has the second largest total capacity in Europe after Germany. It also has the third largest per capita ratio of installed collector surface after Cyprus and Austria. Around 243 000 m² (170.1 MWth) of solar thermal systems have been installed in 2012. The Greek market mostly consists of individual solar water heaters of the thermosiphon type. There is still a significant potential for larger solar thermal systems in the tertiary sector and in industry. The total installed solar PV capacity by the end of 2015 accounted for 2,605 MWp, whereas only 10.3 MWp has been installed throughout this year from which 1.5 MWp concerns systems with net-metering. The total capacity has increased exponentially from 620 MW by the end of 2011 to 2,596 MW at the end of 2014. However, during the year 2015, the installed capacity only increased by roughly 9 MW to a total of 2,605 MW, out of which 375 MW of small PV systems below 10 kWp have been installed under the Special Photovoltaic Rooftop Programme. Only 5.2% of the total PV capacity is installed on non-interconnected islands.

During the year 2015, a total of 3,900 GWh was produced from photovoltaic energy systems, compared to 3,829 GWh in 2014. Photovoltaic energy thus became the third most important RES in terms of generation (after large hydro-power and wind power), producing 41% of RES electricity and 7.1% of total electricity in Greece.

In the past, very high feed-in tariffs of 400-550 €/MWh were granted for photovoltaic energy. These FIT have been reduced by 10-27% between August 2010 and July 2012. In August 2012, there was an important reduction of 32-49%, followed by another significant reduction of 47-55% in June 2013. Due to the large share of older systems with higher tariffs, the average remuneration for PV electricity in 2014 was 313.9 €/MWh for large PV systems and 435 €/MWh for small rooftop PV systems compared to 63.36 €/MWh and 115 €/MWh respectively in 2015.

Since the beginning of 2015, FIT for photovoltaic systems other than rooftop installations with a capacity below 10 kWp are calculated on the basis of the System Marginal Price (SMP) of the previous year that is 115 €/MWh, multiplied by a factor of 1.2 for PV systems with a capacity of 100 kWp and below (69.12 €/MWh), and a factor of 1.1 for PV systems with a capacity above 100 kWp (63.36 €/MWh) as well as for PV systems installed on the non-interconnected islands. Compared with the current costs of photovoltaic projects in Greece, these FIT appear to be too low to stimulate any additional investments.

►Go to Top


Wind Energy

Greece has some of the most attractive sites for the use of wind energy in Europe, with average capacity factors of around 25% for the mainland and 30% for the islands. The economic wind energy potential in Greece is estimated at 10,000-12,000 MW.

The national capacity target for wind energy is 7,500 MW until 2020, including 300 MW of offshore wind energy. By the end of 2015, a total capacity of 2,091 MW of wind parks was installed in Greece, compared to 1,978 MW installed at the end of 2014. A capacity of 323 MW of wind turbines has been installed on the non-interconnected islands, out of which almost 62% have been installed on Crete. The electricity generation from wind energy by December 2015 was 4,621 GWh, compared to 3,689 GWh in 2014. In 2015, wind energy took the second place among RES in terms of total electricity generation, accounting for 48.9% of RES electricity and 8.37% of total electricity generation in Greece.

Off-shore wind turbines have not yet been installed, with the main reasons to be found both at difficulties in the environmental permitting procedure and technical problems mainly due to the depths of the Aegean sea floor. There are plans to introduce a new programme for small wind energy turbines with capacities below 50 kW starting from mid-2014.

Feed-in tariffs for wind parks until December 2015
Type of wind park
FIT (€/MWh) w/o additional support
FIT (€/MWh) with additional support
Wind parks with installed capacity ≤5 MW
105
85
Wind parks with installed capacity > 5 MW
105
82
Wind parks at the non-interconnected islands
110
90

 ►Go to Top


Small hydro-power

By December 2015, there has been an installed capacity of 224 MW of small hydro-power (SHP) plants in Greece.  By definition, these are hydro-power stations with a capacity less than 15 MW. As all SHP plants are of the run-of-river type, most of their generation takes place during the wet season (winter and spring). There are 105 SHP projects in operation, mostly located in Epirus, Macedonia and Peloponnese. Only one SHP plant with a capacity of 300 kW is installed on the non-interconnected islands. SHP plants produced a total of 707 GWh in 2015, compared to 701 GWh in 2014. SHP plants generated around 7.5% of RES electricity and 1.3% of total electricity in Greece during the year 2015.

As in the case of wind energy, this is also due to the reductions of the FIT for existing SHP plants by around 3% as well as of the FIT for new SHP plants by 3-9% in the context of Law 4254/2014. SHP as well as biomass and biogas with CHP are the only RES technologies for electricity generation which are still eligible for receiving support under the new investment law of June 2016. The FIT remuneration tariffs that applied until December 2015 are given in the table below.

Feed-in tariffs for small hydro-power plants until December 2015
Type of small hydro-power plants
FIT (€/MWh) w/o additional support
FIT (€/MWh) with additional support
SHP with installed capacity ≤1 MW
105
85
SHP with installed capacity between 1 and 5 MW
105
83
SHP with installed capacity between 5 and 15 MW
110
80

►Go to Top


Biomass

There are only few biomass energy projects for electricity generation that have been developed in Greece, mainly for the utilization of municipal wastes in biogas plants. The total installed capacity of biomass energy currently stands at 52 MW for a total of 12 individual projects. During the year 2015, biomass capacities of 5 MW have been added. There are no biomass projects installed on the non-interconnected islands. Throughout 2015, a total of 222 GWh of electricity was produced by biomass energy plants. The FIT for biomass energy projects have been differentiated according to the technology (biomass combustion, biogas, gas from landfills and sewage treatment plants). The FIT applied until December 2015 for the different biomass energy technologies are given in the table below.

Feed-in tariffs for different biomass energy technologies until December 2015
Type of biomass energy technology
FIT (€/MWh) w/o support
FIT (€/MWh) with support
Biomass exploited in units with installed capacity up to 1 MW (excluding biodegradable part of municipal wastes)
198
180
Biomass exploited in units with an installed capacity greater than 1 MW and less than 5 MW (excluding biodegradable part of municipal wastes)
170
155
Biomass exploited in units with an installed capacity greater than 5 MW (excluding biodegradable part of municipal wastes)
148
135
Gases emanating from controlled rubbish burial dumps and from sewage treatment units as well as biogases (including biodegradable part of wastes) with an installed capacity up to 2 MW
131
114
Gases emanating from controlled rubbish burial dumps and from sewage treatment units as well as biogases (including biodegradable part of wastes) with an installed capacity greater than 2 MW
108
94
Biogas emanating from biomass (organic remnants from animal farming and agricultural processed remnants and refuse) with an installed capacity above 3 MW
209
190

►Go to Top


Other renewable energy sources

Other RES technologies for electricity generation have not been extensively developed so far. There is a significant potential for the utilization of geothermal energy for electricity generation, especially on some of the Aegean islands (e.g. Milos, Lesvos, Kimolos) and the North-Eastern part of the mainland. The national target for geothermal electricity is 120 MW until 2020.

For the case of concentrated solar power, the national target for 2020 is 250 MW and there are some sites with yearly direct irradiation levels over 2,000 kWh/m2 observed on the Southern Greek islands that could be interesting for CSP installations. Several projects with a combined capacity of 424 MW are currently under development at different stages of the licensing process but not a single one is expected to be put into operation in the near future, while two of them have been approved for support under the NER300 programme.

Other technologies with an interesting technical potential (e.g. ocean energy) have not been developed yet due to their high investment and electricity generation costs as well as the absence of comprehensive resource potential studies.

►Go to Top


Policy Framework, Laws and Regulations

General Energy Policy, Energy Strategy [1]

The priority and top objective of Greek energy policy is to safeguard and manage energy resources in a manner which secures the smooth, uninterrupted and reliable supply of the nation’s energy needs and access for all users to affordable, secure energy. The second objective is to secure energy stocks, through alliances and alternatives energy sources and routes in order to ensure the supply of the domestic market and protect consumers in the case of emergencies. The third objective is the viable and sustainable development of the energy sector from the stage of production to the end-use while protecting nature and safeguarding the environment.

The strategy to ensure supply needs and address energy issues in Greece is shaped by the regulatory and legal framework which focuses today on the following general axis:

  • Access to a wide variety of energy sources
  • Construction of oil and natural gas pipelines within international networks
  • Increased use of domestic energy sources and stocks
  • Reduced dependence on certain high risk energy sources
  • Development of RES installations with the granting of incentives
  • Use and diffusion of clean and efficient environment friendly technologies
  • Liberalization of the market, increased competitiveness and putting an end to monopolies in the electricity and natural gas sectors.
  • Establishment of a healthy investment climate for businesses in the energy sector
  • Energy savings for industry, transport, buildings and homes
  • Establishment of national targets for the increased penetration of energy generated from RES, the reduction of greenhouse gas emissions and energy saving.

►Go to Top


Important Laws and Regulations

Renewable Energy Laws[2]

The support mechanism for electricity generation from RES in Greece until the end of 2015 has been based mainly on Law 3468/2006 and Law 3851/2010. According to these laws, priority is given for the injection of electricity from RES into the electricity grid. The electricity produced has been remunerated by a technology-specific feed-in tariff (FIT). These FIT were further differentiated according to the size of the RES installation with smaller systems benefitting from higher FIT. Payment of the FIT was guaranteed for a period of 20 years (25 years for small PV systems and solar thermal power plants) in the context of a sales contract (Power Purchase Agreement – PPA). Regular degression rates are only applied to FIT for  photovoltaic energy systems of the special programme for rooftops, while the rest of photovoltaic installations are been supported by a type of a fixed coefficient on the basis of last year’s average SMP.

Apart from photovoltaic energy, the FIT for new RES projects until the end of 2015 have been defined by Law 4253/2014. The FIT were fixed at the time of commissioning and differentiated between projects supported under the investment law (or any other support programme) and projects without any kind of additional support. Moreover, Law 4253/2014 provided for an annual cap of 200 MW for new photovoltaic projects and cumulative caps until 2020 for biomass (40 MW), biogas (50 MW), concentrated solar power plants (100 MW) and low enthalpy geothermal projects (50 MW).

►Go to Top


Net-Metering Scheme


In parallel to the FIT scheme, a national net-metering scheme for self-produced electricity from photovoltaic energy has been adopted by Ministerial Decree ΑΠΕΗΛ/Α/Φ1/οικ. 24461 on the 31st of December 2014. Under the net-metering scheme, electricity consumers have the possibility to produce their own electricity with photovoltaic systems concerning both, rooftop and ground-mounted systems, to inject any surplus electricity production into the electricity grid and to offset this surplus electricity with future electricity consumption, in this way reducing their electricity bill. The scheme is being managed by HEDNO and the procedure for submitting applications for the connection of photovoltaic net-metering systems started in May 2015 for connections at the low voltage level and in October 2015 for connections at the medium-voltage level. There are currently plans for allowing “aggregate net-metering”, i.e. the combination of different electricity meters with one RES installation, for specific electricity consumers such as public authorities and farmers.

According to the Ministerial Decree, photovoltaic systems of up to 20 kWp (up to 10 kWp for the non-interconnected islands except Crete) or up to 50% of the agreed power consumption (100% for public-benefit organisations) with a maximum of 500 kWp (50 kWp for Crete and 20 kWp for the other non-interconnected islands) are eligible for the scheme. HEDNO commenced accepting net-metering applications for photovoltaic systems to connect to the low voltage grid in May 2015 and a second round of applications for PV systems to connect directly to the medium voltage grid started in October 2015. According to HEDNO, it accepted 433 applications corresponding to a cumulative 8.16 MW of PV capacity by January 2016. Of these, 359 concern residential, commercial and industrial rooftop systems, whereas the rest of them involve ground-mounted systems.


Licensing procedures for renewable energy projects

The licensing procedure for RES projects has been significantly simplified in 2010. Larger RES projects require a production license (issued by RAE), an installation license (issued by YPEKA or by local authorities) and an operation license (issued by YPEKA or by local authorities). Small and medium sized RES projects (PV and biomass plants ≤ 1 MW, geothermal stations ≤ 500 kW, wind parks ≤ 100 kW) do not require the above licenses. In addition, other licenses (water use, building permit, use of forest land…) as well as an Approval of Environment Terms (AET) or Standard Environmental Commitments (SEC) are required according to the nature of the project. All RES projects have to submit applications for non-binding and binding connection offers to the competent network operator (IPTO or HEDNO). They are also required to sign a connection contract with the competent network operator (IPTO or HEDNO) as well as a PPA with LAGIE (or HEDNO for the non-interconnected islands).

►Go to Top


The RES electricity compensation mechanism

FIT are paid to RES producers through the RES Special Account which is managed by the Electricity Market Operator (LAGIE). The revenues of this account include the following:

  • Revenues of LAGIE from the sale of RES electricity on the wholesale market at the system marginal price (SMP)
  • Revenues from the auctioning of greenhouse gas emission allowances
  • 25% of the fee for the Public Broadcast Company
  • Special fee of 2€/MWh for electricity produced by lignite
  • Special Fee for the Reduction of Greenhouse Gases Emissions (ETMEAR)

The ETMEAR which is collected through electricity bills varies between different categories of final consumers. The ETMEAR has been increased several times since 2011 when it stood at 1.84 €/MWh. The last revision was in July 2013, with an increase of the weighted average ETMEAR from 9.30 €/MWh to 14.96 €/MWh. For households, the ETMEAR currently stands at 20.5 €/MWh.

►Go to Top

Specific Strategies

National Action Plan 20-20-20 [3]

According to the EU Directive 2009/28/EC, Greece has to achieve a target of 18% renewable energy sources (RES) in gross final energy consumption by 2020. This target has been increased to 20% (Law 3851/2010), while the specific trajectory for achieving it is presented in the National Renewable Energy Action Plan (NREAP) of 2010. The overall target is broken down further into sub-targets of 40% RES in gross electricity consumption, 20% RES in final energy consumption for heating and cooling, and 10% RES in final energy consumption for transport until 2020.

►Go to Top


Institutional Set-up in the Energy Sector

Ministry of Environment, Energy and Climate Change (MEECC/YPEKA)

The Ministry of Environment, Energy and Climate Change (MEECC/YPEKA) has the responsibility for the definition and implementation of the national energy policy as well as the coordination of the energy sector, including the promotion of renewable energy sources. YPEKA supervises a number of public institutions and companies with activities in the renewable energy sector, including RAE, PPC, IPTO, HEDNO and CRES. The responsible organisational unit within YPEKA is the General Secretariat for Energy and Climate Change.

Website: http://www.ypeka.gr


Regulatory Authority for Energy (RAE)

The Regulatory Authority for Energy (RAE) is an independent administrative authority, with financial and administrative independence under the supervision of YPEKA. RAE monitors the operation of the energy markets, including electricity from RES. It issues opinions on electricity retail tariffs as well as access tariffs to electricity transmission and distribution networks. It is responsible for granting production licenses for electricity generation from RES. RAE also acts as a dispute settlement authority with respect to complaints against transmission or distribution system operators in the electricity sector.

Website: http://www.rae.gr

►Go to Top

Operator of the Electricity Market (LAGIE)

LAGIE has the responsibility for the operation of the electricity market according to the mandatory pool model. Fossil fuel and large hydro electricity producers submit their offers to LAGIE that organises the day-ahead market based on these offers. For the case of RES, LAGIE concludes power purchase agreements (PPA) with RES producers based on the current feed-in tariffs (FIT). These FIT are paid from the RES Special Account which is also managed by LAGIE. For the non-interconnected islands, the funds are transferred by LAGIE to HEDNO. Apart from the short term wholesale electricity market, LAGIE also has the responsibility for managing the long term capacity market as well as the imbalance settlement mechanism.

Website: http://www.lagie.gr

►Go to Top

Public Power Corporation (PPC/DEI)

The Public Power Corporation (PPC/DEI) Group consists until today of four companies with separate legal and managerial identities: PPC S.A., ADMIE, DEDDIE and PPC Renewables. The PPC Group currently holds assets in lignite mines, power generation, transmission and distribution. PPC S.A. is the biggest power producer and electricity supply company in Greece with approximately 7.4 million customers and a market share of around 98%. PPC’s current power portfolio consists of conventional thermal and hydroelectric power plants accounting for approximately 70% of the total installed capacity in the country. In 2012, the total installed capacity of PPC generation plants was 12.5 GW. PPC is active in the RES sector through its subsidiary company “PPC Renewables S.A.” (PPCR).

Website: http://www.dei.gr

►Go to Top

Independent Power Transmission Operator (IPTO/ADMIE)

The Independent Power Transmission Operator (IPTO/ADMIE) S.A. is a wholly owned subsidiary of PPC S.A. that is however independent from its parent company in terms of its management and operation. There are plans for the full ownership unbundling of IPTO in 2014. IPTO has the role of Transmission System Operator (TSO) for the Hellenic Electricity Transmission System and is responsible for system operation, maintenance and development. IPTO is also managing electricity flows on the system, taking into account exchanges with other interconnected systems. It prepares on an annual basis the Hellenic Electricity Transmission System Ten Year Development Plan. It is also responsible for preparing day-ahead forecasts of the load and the RES electricity production as well as the optimisation of the day-ahead schedule.

Website: http://www.admie.gr

►Go to Top

Hellenic Electricity Distribution Network Operator (HEDNO/DEDDIE)

The Hellenic Electricity Distribution Network Operator S.A. (HEDNO/DEDDIE) is a wholly owned subsidiary of PPC S.A., that is however independent from its parent company in terms of its management and operation. Its responsibilities are the operation, maintenance and development of the electricity distribution network in Greece. This includes the non-interconnected electricity networks as well as the electricity generation facilities on the Greek islands. On the islands, HEDNO is responsible for concluding power purchase agreements (PPA) with RES producers. HEDNO also manages the access of electricity consumers as well as RES electricity producers to the distribution network.

Website: http://www.deddie.gr

►Go to Top

Centre for Renewable Energy Sources and Saving (CRES)

The Centre for Renewable Energy Sources and Saving (CRES) is a national entity for the promotion of renewable energy sources, rational use of energy and energy conservation. It was founded in September 1987 as a public entity which is supervised by YPEKA and has financial and administrative independence. CRES provides advisory services to YPEKA for the definition and implementation of the national renewable energy policy, strategy and planning. It conducts applied research on new energy technologies and provides technical support for the penetration and implementation of these technologies. CRES also implements European, national and international projects for the promotion and market penetration of new energy technologies.

Website: http://www.cres.gr


Renewable energy private sector associations and companies

There are a number of Greek associations representing the private companies that are active in the renewable energy sector. These include the Greek Association of RES Electricity Producers (GAREP), the Hellenic Wind Energy Association (HWEA/ELETAEN), the Hellenic Association of Photovoltaic Companies (HELAPCO), the Hellenic Association of Photovoltaic Energy Producers (SPEF), Greek Solar Industry Association (EBHE), the Hellenic Small Hydro Power Association (HSHA) and the Hellenic Association for the Development of Biomass (HELLABIOM).

Several hundred Greek and international companies are active in the RES sector in Greece. In the photovoltaic sector, a large number of predominantly small and medium companies and individuals (including farmers) operating several projects of different capacity are present. The wind energy sector in Greece is dominated by specialised companies that develop, own and operate a portfolio of wind parks, and in many cases also photovoltaic power stations and small hydro plants. Six companies own and operate wind parks that correspond to almost 70% of the installed capacity.

Greek Association of RES Electricity Producers: http://www.hellascres.gr

Hellenic Wind Energy Association: http://www.eletaen.gr

Hellenic Association of Photovoltaic Companies: http://www.helapco.gr

Hellenic Association of Photovoltaic Energy Producers:http://www.spef.gr

Greek Solar Industry Association: http://www.ebhe.gr

Hellenic Small Hydro Power Association: http://www.microhydropower.gr

Hellenic Association for the Development of Biomass: http://www.hellabiom.gr

►Go to Top

Planned and Ongoing Energy Projects

The below-mentioned international energy projects with Greek involvement have been selected as Projects of Common Interest (PCI) by the European Commission.

►Go to Top

Euro Asia Interconnector

The so-called Euro Asia Interconnector refers to plans to construct a 600 kV HVDC interconnection between Israel and Greece, passing through Cyprus and Crete. This project will also interconnect Crete to the Greek mainland electricity system and facilitate the further development of RES on the island. The project will have a capacity of 2000 MW and a total length of around 1,518 km (329 km between Cyprus and Israel, 879 km between Cyprus and Crete and 310 km between Crete and Athens).


Interconnector Greece-Bulgaria (IGB)

The natural gas Interconnector Greece-Bulgaria (IGB) will provide a direct link between the national natural gas systems of Greece and Bulgaria. The IGB pipeline will have an overall length of 182 km and an annual capacity of 3 billion cubic meters (bcm). The pipeline is expected to be put in operation in December 2014.


Trans Adriatic Pipeline (TAP)

The Trans Adriatic Pipeline (TAP) will be used for transporting natural gas from the Caspian basin in Azerbaijan to Western Europe. Connecting to the Trans-Anatolian Pipeline (TANAP), TAP will transport the gas through Greece and Albania, crossing the Adriatic and terminating in Italy. The pipeline is supposed to supply a total of 10 billion cubic meters (bcm) of natural gas to markets Europe. It has a total length of 867 km with 547 km in Greece. Construction is supposed to begin in 2015 and will be completed until 2019.

►Go to Top


Further Information

International Energy Agency: Energy Policies of IEA Countries. Greece 2011 Review: http://www.iea.org/publications/freepublications/publication/Greece2011_unsecured.pdf

Invest in Greece: http://www.investingreece.gov.gr/default.asp?pid=36§orID=38&la=1


References

  1. Ministry of Environment, Energy and Climate Change: http://www.ypeka.gr/Default.aspx?tabid=225&language=en-US
  2. Ministry of Environment, Energy and Climate Change: http://www.ypeka.gr/LinkClick.aspx?fileticket=qtiW90JJLYs%3d&tabid=37
  3. Ministry of Environment, Energy and Climate Change: http://www.ypeka.gr/LinkClick.aspx?fileticket=CEYdUkQ719k%3d&tabid=37