Public Private Partnerships (PPP) - INENSUS

From energypedia
Revision as of 09:30, 16 May 2012 by ***** (***** | *****)
Maintenance: Revision needed
This article needs to be revised. Please rewrite the article according to the specifications below. Only remove this maintenance box after a thorough revision of this article. See the discussion page for more details or start a discussion there.

In particular the following aspects and passages have been specified to be in need for a revision:
NEEDS UPDATE.

Introduction

The public private partnership (PPP) between GIZ/PERACOD and INENSUS is a project aiming at the realisation of village electrification by means of solar-diesel-wind hybrid systems in Senegal. It is financed under EnDev (Energising Development).


Overview

The origins of the PPP project can be traced to a business trip organised by GTZ on behalf of the ministry of economy in 2006. Several German enterprises visited Senegal and, in the aftermath, two projects materialised: the PPP between INENSUS and GTZ/PERACOD and a second PPP between solar23, dena and GTZ/PERACOD, see PPP solar23.

In early 2011, the PPP was awarded two prestigious awards: the IKU award 2010 and the SEED award 2010. (See info flyer on the SEED award here.)


Benefits

One of the innovative approaches of this PPP is the integration of three different generation technologies into one minigrid. Several benefits are meant to be realised this way:

  • Higher security of supply (lower probability of power outages): it is difficult and expensive to lay out a system in a way as to guarantee that it will work under all circumstances. A combination of different technologies in one system will most likely provide higher security of supply at a lower cost.
  • Optimal utilisation of local renewable energy sources should reduce specific cost of energy.
  • Lower specific cost of storage: optimal utilisation of the different energy sources available should reduce the size of the battery necessary, or, inversely put, should provide for more service with the same battery size.


Innovative Approaches

The PPP is innovative in several aspects:

  • Utilization of a small wind energy turbine for rural electrification. Most wind energy schemes deal with wind parks that feed into the interconnected grid. This is this first project in Senegal to tap into wind energy resources for rural electrification.
  • Application of a new tariff scheme. INENSUS tries to apply a new tariff scheme (still to be validated by the regulatory authority, CRSE) which consists in selling energy and power blocks. Each block is cost-recovering in itself. Currently, blocks are sized at 50W power, 1,4kWh per week consumption and are priced at 2840 XOF ( 4,33 EUR) per block.
  • Installation of a three-phased grid. This means higher cost of investment for inverters, but also higher potential for future development, as more powerful machinery is frequently operated by three-phase motors.
  • Utilisation of pre-paid meters. This project is the first in Senegal to use pre-paid meters in rural electrification. The meters have been developed and supplied by INENSUS. The device not only integrates prepayment, but also limits power and energy according to programmed values. The meters also integrate the possibility to disconnect loads based on priorities. In case of an overloaded grid, low-priority charges are disconnected first, while high-priority charges (health station) remain connected as long as possible.


1st Phase: Wind Measurements

Measurement pole in the village of Sakhor in the Sine Saloum delta. The pole is 12m high and has two anemometers. Over the course of the 12-months period, it suffered from substantial corrosion due to the salty atmosphere.

In a first phase, wind measurements were taken at five villages. Four of the five sites were chosen alongside the so-called "Grande Cote" (big coast) region of Senegal, north of Dakar. This region is known for its wind potential and has been investigated for other wind energy projects as well (see a TERNA study here). A last site was chosen inland along the delta of rivers Sine and Saloum.

The wind measurements were conducted with poles of 12m that carried two anemometers, one at 7m and another at 12m height. After 12 months of measurement, the site of Sine Moussa Abdou showed the most potential: average wind speed was estimated to be 5.27m/s at the hub height of 18m (more information in this document). This village was subsequently chosen for the implementation of a pilot project.

In addition, the first phase dealt with the elaboration of a business plan and the adaptation of INENSUS’ approach to the Senegalese framework conditions.


2nd Phase: One Village

In a second phase, the village with the highest potential, Sine Moussa Abdou, was chosen for electrification. This part of the PPP was carried out in collaboration between GIZ/PERACOD, the newly founded INENSUS West Africa S.A.R.L. and EWE AG over a period of 18 months.


Timeline

The implementation followed this rough timeline

  • April 2009: PPP contract signed by all three parties
  • May 2009: technical specifications available
  • June 2009: first draft of powerhouse plan / technical drawing available
  • July 2009: grid study available
  • August 2009: final version of powerhouse plan / technical drawing available
  • September 2009: evaluation of offers for purchase of solar equipment in Germany
  • October 2009: formal document between ASER and INENSUS signed
  • November 2009: powerhouse constructed
  • December 2009: grid constructed
  • January: installation of power equipment (solar, diesel, wind) and household installations
  • March 2010: inauguration by the deputy minister of energy

After the inauguration, some work remained to be done on the grid itself and concerning household installations. The project was continued until the end of 2010 and included monitoring, fostering of productive use activities, continued work with officials, and other activities.


The Village

The village has a population of about 900 inhabitants in 69 households. Principal activities are agriculture, animal husbandry and small-scale commerce. There is one primary school with three rooms, one health post, and one mosque.

Technical Details

The system features the following components:

  • Wind energy turbine: Fortis Montana, 5kW, 18m hub height. The turbine is connected to the battery bank via a charge controller. In case there is excess power, this power is diverted to heating resistors and “burnt off”.
  • Solar generator: 5.16 kW (24 REC 215AE modules in three strings), mounted on aluminium supports from Schletter, connected via 3 SMA SB 2500 grid-tie inverters.
  • Battery inverters: three SMA SunnyIsland 5048.
  • Diesel generator: 10 kVA, Cummins, with a reservoir of 3500l.
  • Battery bank: Hoppecke OPzS, 2500Ah, 48V, with system for automatic refilling of distilled water.
  • Grid: three-phase grid with 35mm² for each phase, 54mm² for neutral and 16mm² for public lighting, pre-assembled, about 2.5km in length, operated in three phases.

On the client side, household installations feature:

  • ...Text missing...


Lessons Learnt


3rd phase: extension to three villages

This third phase is currently (Feb 2010) in a planning stage.


Further Information