Difference between revisions of "Design Supply Infrastructure"
***** (***** | *****) m (Hector Alfaro moved page PeopleSuN Knowledge Hub - Design Supply Infrastructure to Nigeria Off-Grid Solar Knowledge Hub - Design Supply Infrastructure without leaving a redirect) |
***** (***** | *****) m Tag: 2017 source edit |
||
Line 1: | Line 1: | ||
<div class="portal-mozambique"> <!-- Defines the color of headlines, link, etc. ) --> | <div class="portal-mozambique"> <!-- Defines the color of headlines, link, etc. ) --> | ||
{{PplSun:Backlink Home}} | {{PplSun:Backlink Home}} | ||
+ | |||
+ | |||
+ | ==Introduction== | ||
+ | The technical design of the electricity supply infrastructure is a central aspect for the successful implementation of rural electrification interventions. As well as a review of technical planning tools (#link to tools list#) this section addresses important aspects in technical design such as standards, open source technologies, the localization of the upstream value chain of components, and end-of-life aspects. | ||
==Definitions== | ==Definitions== | ||
Line 9: | Line 13: | ||
#Design the distribution system | #Design the distribution system | ||
− | ==Existing Tools and | + | ==Challenges== |
+ | |||
+ | ==Guiding Principles== | ||
+ | ===Which standards need to be met?=== | ||
+ | Quality standards for SAS products in Nigeria are based on the International Electrotechnical Commission (IEC) standards and set out by the Standards Organization of Nigeria (SON). SON developed quality standards under the SON Conformity Assessment Program (SONCAP) for product certifications to ensure minimum product standard conformity through the setting up of a testing lab for market quality checks and surveillance (ACE TAF, 2021). | ||
+ | |||
+ | When importing goods, importers must present a Product Certificate (PC) for the clearance of their goods and a SONCAP Certificate (SC) for each consignment of regulated products issued by an international accreditation company. ACE TAF developed an importation guide for solar PV products and technologies in Nigeria which gives information on quality standards, harmonized commodity description and coding systems as well as providing guidance for the importation process of solar technologies (ACE TAF, 2019). | ||
+ | |||
+ | Link to GOGLA: [https://www.gogla.org/sites/default/files/resource_docs/gogla_whitepaper_the-connect-initiative_def.pdf The connect white paper] | ||
+ | |||
+ | ===Usage of Open-source designs=== | ||
+ | An Open source design is a design which is publicly available and can easily be reproduced, developed and maintained. This means that anyone can look at the data, documents or, in the case of a software, code and in some cases modify and distribute it. Open source can also emerge in the form of a freely accessible blueprint that other developers can adopt. In this way, systems for example mini grids can benefit from the experience of many people and continue to develop (WISIONS, 2021). | ||
+ | |||
+ | Smart grid technologies like Electronic Load Controllers (ELC) can manage off-grid systems automatically and optimize the use of renewable power. ELCs are often only available at high prices or utilize internet connections when they are not installed in form of a hardware. By using open source designs developers can reduce costs of both acquisition and maintenance. Open source makes it easier to reproduce and therefore manufacture and maintain locally, as the distributors have insights into the hardware. Furthermore the use of ELCs can have the benefit of collecting parameters like the system performance over lifetime or system efficiency, which can help to optimize the use of the system (WISIONS, 2020). | ||
+ | |||
+ | '''Example:''' | ||
+ | SolarWhat?! - uses open-source hardware that are repairable, reusable and recyclable ([http://www.solarwhat.xyz/features.php homepage]) | ||
+ | |||
+ | ===Localisation of the upstream value chain=== | ||
+ | The localisation of the upstream value chain of OGS products can create new local businesses. This is especially a benefit in rural areas as the informal sector still represents a large percentage of the economies performance. Especially in the component assembly and manufacturing sector, new jobs can be created. Other areas are: acquisition, sales and distribution, installation, technical maintenance and customer service. Localisation also offers advantages in terms of financing. The Solar Power Naija program requirements for applications include for example a certain share of locally-sourced components (GOGLA, 2019). | ||
+ | |||
+ | Currently almost all solar related products are imported. Only 10% of market demand is manufactured by two operators in Nigeria. In order to provide incentives for local production, the federal government granted solar panel manufacturing in 2017 (RVO, 2021). | ||
+ | |||
+ | [[File:PplSuN-value-chain.png|link=|center|600x600px]] | ||
+ | |||
+ | ===Include end-of-life aspects of the infrastructure=== | ||
+ | The term end-of-life refers to the last step of the product life cycle. Different methods of dealing with a product at the end of its life must be defined. Reusing and recycling components should always be considered first before disposing. | ||
+ | |||
+ | Many solar products are not repaired or recycled or these processes are carried out in the informal sector which can lead to major environmental damage and health issues for the workers and people benefitting from them. Meanwhile an increasing number of companies are focusing on the optimization of the product life cycle, which includes a longer product life and the handling of the product at the end of the value chain. Furthermore, many companies are establishing e-waste strategies voluntarily, motivated through environmental and social aspects. An e-waste strategy can also add economic value by generating an additional source of revenue. For example, the introduction of an after-sale service can help to increase customer trust and thereby increase the return rate of the components which can then be repaired and resold. E-waste strategies may include take-back and collection systems for old appliances, second-life batteries or improved reparability (Rhodes, 2020). | ||
+ | |||
+ | Various other approaches can be taken into account for incorporating end-of-life aspects in the design of electrification measures. When selecting materials and resources, e.g. batteries, attention should be paid to durability and ease of repair (e.g. by exchanging individual components). Furthermore, customers must be offered incentives to return their old appliances and have defective appliances repaired for example in the form of a warranty. Companies should additionally create a Standard Operating Procedure (SOP) to assist with the operational delivery of an e-waste management strategy (Magalini et al., 2021). | ||
+ | |||
+ | It should be noted that most companies which are voluntarily engaging in e-waste management, are not profitable yet. However, companies can benefit from funding. The Global LEAP Awards is recognising end-of-life aspects through providing grant funding to firms which want to improve repairability, upcycle or recycle solar components (Munro et al., 2022). | ||
+ | |||
+ | ==Existing Tools== | ||
+ | This section will focus on tools for mini grid and solar home distributors, addressing technical aspects and design considerations. | ||
+ | |||
+ | ===Mini Grid=== | ||
+ | '''USAID Toolkit on technical design''' | ||
+ | This Toolkit summarizes five key steps for a successful mini grid design: (I) geographic scope, (II) access to available energy resources, (III) system size, (IV) system configuration and (V) the distribution system design. | ||
+ | |||
+ | https://www.usaid.gov/energy/mini-grids/technical-design | ||
+ | |||
+ | '''HOMER Software''' | ||
+ | The “Hybrid Renewable and Distributed Generation System Design” (HOMER) software evaluates and compares hybrid micro grids and on-grid systems by cost effectiveness and reliability and optimizes the energy assets (sizing and operation). The software is commonly used for comparing different scenarios. | ||
+ | |||
+ | https://www.homerenergy.com/ | ||
+ | |||
+ | '''Green Mini-Grid Help Desk''' | ||
+ | The Help Desk hosted by the African Development Bank (AfDB) is providing information for mini grid developers, policymakers and regulators in sub-saharan Africa. It provides insights from the setting up of a mini grid (business) over technical design to operation and maintenance. Beside this, publications as well as training and templates to relevant topics can be found here. | ||
+ | |||
+ | https://greenminigrid.afdb.org/ | ||
+ | |||
+ | '''PROSPECT - Open-source data platform''' | ||
+ | Prospect is a free, real-time, product-agnostic open source data and transaction platform. Services include the collection of real-time data as well as the analysation and visualization of them. For the analysis of performance and impact, Prospect combines customer, technical, usage, maintenance, and payment data streams. Through the built-in transaction functionality, users can be supported in their financing and subsidy disbursement. The platform is designed for small solar home systems as well as large mini grids and grid-connected networks. | ||
+ | |||
+ | https://prospect.energy/ | ||
+ | |||
+ | ===Solar Home Systems (SHS)=== | ||
+ | '''PROSPECT - Open-source data platform''' | ||
+ | Prospect is a free, real-time, product-agnostic open source data and transaction platform. Services include the collection of real-time data as well as the analysation and visualization of them. For the analysis of performance and impact, Prospect combines customer, technical, usage, maintenance, and payment data streams. Through the built-in transaction functionality, users can be supported in their financing and subsidy disbursement. The platform is designed for small solar home systems as well as for large mini grids and grid-connected networks. | ||
+ | |||
+ | https://prospect.energy/ | ||
+ | |||
+ | '''PVPal - Solar PV System Design Toolkit''' | ||
+ | The toolkit provided by Green Empowerment, comprises an excel based software for designing off-grid solar systems for small scale power systems. | ||
− | + | https://greenempowerment.org/technical-resources/renewable-energy-technical-resources/ | |
− | + | '''Building DC Energy Systems''' | |
+ | The Open Educational Resource provided by Libre Solar is an open source hub, providing information on hardware and software for smart and renewable energy systems. Furthermore the website gives information on the layout of energy systems, component development and production for a printed circuit board (PCB), a carrier for electronic components. | ||
− | + | https://libre.solar/ | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==Case Study== | ==Case Study== | ||
+ | |||
+ | ==Bibliography== | ||
</div><!-- End .NIGERIA--> | </div><!-- End .NIGERIA--> | ||
[[Category:Nigeria Off-Grid Solar Knowledge Hub]] | [[Category:Nigeria Off-Grid Solar Knowledge Hub]] |
Revision as of 14:24, 10 March 2023
Introduction
The technical design of the electricity supply infrastructure is a central aspect for the successful implementation of rural electrification interventions. As well as a review of technical planning tools (#link to tools list#) this section addresses important aspects in technical design such as standards, open source technologies, the localization of the upstream value chain of components, and end-of-life aspects.
Definitions
- Define the Geographical Scope of the project
- Assess available energy resources
- Size the system
- Select the system configuration
- Design the distribution system
Challenges
Guiding Principles
Which standards need to be met?
Quality standards for SAS products in Nigeria are based on the International Electrotechnical Commission (IEC) standards and set out by the Standards Organization of Nigeria (SON). SON developed quality standards under the SON Conformity Assessment Program (SONCAP) for product certifications to ensure minimum product standard conformity through the setting up of a testing lab for market quality checks and surveillance (ACE TAF, 2021).
When importing goods, importers must present a Product Certificate (PC) for the clearance of their goods and a SONCAP Certificate (SC) for each consignment of regulated products issued by an international accreditation company. ACE TAF developed an importation guide for solar PV products and technologies in Nigeria which gives information on quality standards, harmonized commodity description and coding systems as well as providing guidance for the importation process of solar technologies (ACE TAF, 2019).
Link to GOGLA: The connect white paper
Usage of Open-source designs
An Open source design is a design which is publicly available and can easily be reproduced, developed and maintained. This means that anyone can look at the data, documents or, in the case of a software, code and in some cases modify and distribute it. Open source can also emerge in the form of a freely accessible blueprint that other developers can adopt. In this way, systems for example mini grids can benefit from the experience of many people and continue to develop (WISIONS, 2021).
Smart grid technologies like Electronic Load Controllers (ELC) can manage off-grid systems automatically and optimize the use of renewable power. ELCs are often only available at high prices or utilize internet connections when they are not installed in form of a hardware. By using open source designs developers can reduce costs of both acquisition and maintenance. Open source makes it easier to reproduce and therefore manufacture and maintain locally, as the distributors have insights into the hardware. Furthermore the use of ELCs can have the benefit of collecting parameters like the system performance over lifetime or system efficiency, which can help to optimize the use of the system (WISIONS, 2020).
Example: SolarWhat?! - uses open-source hardware that are repairable, reusable and recyclable (homepage)
Localisation of the upstream value chain
The localisation of the upstream value chain of OGS products can create new local businesses. This is especially a benefit in rural areas as the informal sector still represents a large percentage of the economies performance. Especially in the component assembly and manufacturing sector, new jobs can be created. Other areas are: acquisition, sales and distribution, installation, technical maintenance and customer service. Localisation also offers advantages in terms of financing. The Solar Power Naija program requirements for applications include for example a certain share of locally-sourced components (GOGLA, 2019).
Currently almost all solar related products are imported. Only 10% of market demand is manufactured by two operators in Nigeria. In order to provide incentives for local production, the federal government granted solar panel manufacturing in 2017 (RVO, 2021).
Include end-of-life aspects of the infrastructure
The term end-of-life refers to the last step of the product life cycle. Different methods of dealing with a product at the end of its life must be defined. Reusing and recycling components should always be considered first before disposing.
Many solar products are not repaired or recycled or these processes are carried out in the informal sector which can lead to major environmental damage and health issues for the workers and people benefitting from them. Meanwhile an increasing number of companies are focusing on the optimization of the product life cycle, which includes a longer product life and the handling of the product at the end of the value chain. Furthermore, many companies are establishing e-waste strategies voluntarily, motivated through environmental and social aspects. An e-waste strategy can also add economic value by generating an additional source of revenue. For example, the introduction of an after-sale service can help to increase customer trust and thereby increase the return rate of the components which can then be repaired and resold. E-waste strategies may include take-back and collection systems for old appliances, second-life batteries or improved reparability (Rhodes, 2020).
Various other approaches can be taken into account for incorporating end-of-life aspects in the design of electrification measures. When selecting materials and resources, e.g. batteries, attention should be paid to durability and ease of repair (e.g. by exchanging individual components). Furthermore, customers must be offered incentives to return their old appliances and have defective appliances repaired for example in the form of a warranty. Companies should additionally create a Standard Operating Procedure (SOP) to assist with the operational delivery of an e-waste management strategy (Magalini et al., 2021).
It should be noted that most companies which are voluntarily engaging in e-waste management, are not profitable yet. However, companies can benefit from funding. The Global LEAP Awards is recognising end-of-life aspects through providing grant funding to firms which want to improve repairability, upcycle or recycle solar components (Munro et al., 2022).
Existing Tools
This section will focus on tools for mini grid and solar home distributors, addressing technical aspects and design considerations.
Mini Grid
USAID Toolkit on technical design This Toolkit summarizes five key steps for a successful mini grid design: (I) geographic scope, (II) access to available energy resources, (III) system size, (IV) system configuration and (V) the distribution system design.
https://www.usaid.gov/energy/mini-grids/technical-design
HOMER Software The “Hybrid Renewable and Distributed Generation System Design” (HOMER) software evaluates and compares hybrid micro grids and on-grid systems by cost effectiveness and reliability and optimizes the energy assets (sizing and operation). The software is commonly used for comparing different scenarios.
Green Mini-Grid Help Desk The Help Desk hosted by the African Development Bank (AfDB) is providing information for mini grid developers, policymakers and regulators in sub-saharan Africa. It provides insights from the setting up of a mini grid (business) over technical design to operation and maintenance. Beside this, publications as well as training and templates to relevant topics can be found here.
https://greenminigrid.afdb.org/
PROSPECT - Open-source data platform Prospect is a free, real-time, product-agnostic open source data and transaction platform. Services include the collection of real-time data as well as the analysation and visualization of them. For the analysis of performance and impact, Prospect combines customer, technical, usage, maintenance, and payment data streams. Through the built-in transaction functionality, users can be supported in their financing and subsidy disbursement. The platform is designed for small solar home systems as well as large mini grids and grid-connected networks.
Solar Home Systems (SHS)
PROSPECT - Open-source data platform Prospect is a free, real-time, product-agnostic open source data and transaction platform. Services include the collection of real-time data as well as the analysation and visualization of them. For the analysis of performance and impact, Prospect combines customer, technical, usage, maintenance, and payment data streams. Through the built-in transaction functionality, users can be supported in their financing and subsidy disbursement. The platform is designed for small solar home systems as well as for large mini grids and grid-connected networks.
PVPal - Solar PV System Design Toolkit The toolkit provided by Green Empowerment, comprises an excel based software for designing off-grid solar systems for small scale power systems.
https://greenempowerment.org/technical-resources/renewable-energy-technical-resources/
Building DC Energy Systems The Open Educational Resource provided by Libre Solar is an open source hub, providing information on hardware and software for smart and renewable energy systems. Furthermore the website gives information on the layout of energy systems, component development and production for a printed circuit board (PCB), a carrier for electronic components.