Difference between revisions of "Recycling of Photovoltaic (PV) Batteries"
***** (***** | *****) |
***** (***** | *****) |
||
Line 1: | Line 1: | ||
− | + | ''<font size="3"><font size="3"></font></font><font size="3"><font size="3"></font></font>''<font size="3"><font size="3"></font></font> <font size="3"><font size="3"></font></font> | |
+ | <font size="3"><font size="3"></font></font>'''<font size="2"><font size="2"></font></font><font size="3"><font size="3"></font></font>'''<font size="3"><font size="3"></font></font><font size="3"><font size="3"></font></font>'''<font size="1"><font size="1"></font></font><font size="1"><font size="1">44%</font></font><font size="1"><font size="1"></font></font>'''<font size="1"><font size="1"></font></font><font size="1"><font size="1">56%</font></font><font size="1"><font size="1"></font></font><font size="1"><font size="1">4</font></font><font size="1"><font size="1">60%</font></font><font size="1"><font size="1">2</font></font><font size="1"><font size="1">) 19%</font></font><font size="1"><font size="1"></font></font><font size="3"><font size="3"></font></font>'''<font size="1"><font size="1"></font></font><font size="1"><font size="1">Information Service /</font></font>gtz<font size="1"><font size="1">, PO Box 5180, 65726 Eschborn, Germany</font></font><font size="1"><font size="1"></font></font><font size="3"><font size="3"></font></font>'''<font size="3"><font size="3"></font></font><font size="3"><font size="3"></font></font>'''<font size="3"><font size="3"></font></font><font size="3"><font size="3">metal from grids, terminals</font></font>'''<font size="3"><font size="3"></font></font><font size="1"><font size="1">2</font></font><font size="3"><font size="3">)</font></font><font size="3"><font size="3">lead oxides, part of the paste</font></font>'''<font size="3"><font size="3"></font></font><font size="1"><font size="1">4</font></font><font size="3"><font size="3">lead sulphate, part of the</font></font><font size="1"><font size="1">2</font></font><font size="3"><font size="3">) into Pb through a</font></font><font size="3"><font size="3">→</font></font><font size="3"><font size="3">2 Pb + CO</font></font><font size="1"><font size="1">2</font></font><font size="3"><font size="3"></font></font><font size="1"><font size="1">2</font></font><font size="3"><font size="3">+ C</font></font><font size="3"><font size="3">→</font></font><font size="3"><font size="3">Pb + CO</font></font><font size="1"><font size="1">2</font></font><font size="3"><font size="3"></font></font><font size="1"><font size="1">4</font></font><font size="3"><font size="3">into</font></font><font size="3"><font size="3">→</font></font><font size="3"><font size="3">PbS + 2 CO</font></font><font size="1"><font size="1">2</font></font><font size="3"><font size="3"></font></font><font size="3"><font size="3">→</font></font><font size="3"><font size="3">Pb +FeS</font></font><font size="3"><font size="3">→</font></font><font size="3"><font size="3">3 Pb + SO</font></font><font size="1"><font size="1">2</font></font><font size="3"><font size="3"></font></font><font size="1"><font size="1">2</font></font><font size="3"><font size="3">→</font></font><font size="3"><font size="3">2 Pb + SO</font></font><font size="1"><font size="1">2</font></font><font size="3"><font size="3"></font></font><font size="3"><font size="3"></font></font><font size="1"><font size="1">3</font></font><font size="3"><font size="3">). The lead in the kettle is</font></font>'''<font size="3"><font size="3"></font></font><font size="3"><font size="3"></font></font><font size="3"><font size="3"></font></font><font size="1"><font size="1">4</font></font><font size="3"><font size="3">into lead metal. They only</font></font>'''<font size="3"><font size="3"></font></font><font size="3"><font size="3"></font></font><font size="3"><font size="3"></font></font><font size="3"><font size="3"></font></font><font size="3"><font size="3"></font></font><font face="Arial" size="3"><font face="Arial" size="3"></font></font><font size="3"><font size="3"></font></font>'''<font size="3"><font size="3"></font></font><font size="3"><font size="3"></font></font><font size="1"><font size="1">2</font></font><font size="3"><font size="3">CO</font></font><font size="1"><font size="1">3</font></font><font size="3"><font size="3">) and reaction</font></font><font size="3"><font size="3"></font></font><font size="3"><font size="3"></font></font><font size="3"><font size="3"></font></font><font size="3"><font size="3"></font></font>'''<font size="3"><font size="3"></font></font><font size="3"><font size="3"></font></font>'''<font size="3"><font size="3"></font></font><font size="3"><font size="3"></font></font><font size="1"><font size="1">2</font></font><font size="3"><font size="3">Sdross</font></font><font size="3"><font size="3"></font></font><font size="3"><font size="3"></font></font><font size="1"><font size="1">3</font></font><font size="3"><font size="3">) can</font></font><font size="3"><font size="3"></font></font><font size="3"><font size="3"></font></font>'''<font size="3"><font size="3"></font></font><font size="3"><font size="3"></font></font><font size="1"><font size="1">2</font></font><font size="3"><font size="3">, etc.), a certain</font></font><font size="3"><font size="3"></font></font><font size="3"><font size="3"></font></font><font size="3"><font size="3"></font></font>'''<font size="3"><font size="3"></font></font><font size="3"><font size="3"></font></font><font size="3"><font size="3"></font></font><font size="3"><font size="3">soil and groundwater contamination by</font></font><font size="3"><font size="3"></font></font><font size="3"><font size="3">wind dispersal of lead dust if crushed</font></font><font size="3"><font size="3"></font></font><font size="3"><font size="3">substantial atmospheric emissions</font></font><font size="1"><font size="1">2</font></font><font size="3"><font size="3">,</font></font><font size="1"><font size="1"></font></font><font size="3"><font size="3">processing the entire battery</font></font><font size="1"><font size="1"></font></font><font size="3"><font size="3">inadequate removal of gases and</font></font><font size="1"><font size="1"></font></font><font size="3"><font size="3">absent or inadequate flue gas</font></font><font size="3"><font size="3"></font></font><font size="3"><font size="3">use of water-soluble soda slag without</font></font><font size="3"><font size="3"></font></font><font size="3"><font size="3">open storage of slag and ashes of the</font></font><font size="3"><font size="3"></font></font><font size="3"><font size="3">open tipping of residues and wastes</font></font><br>'''''''''''''''''''''''''''''''''''''''''''''''' | ||
+ | <div align="left">Therefore, recyclers have to be aware that</div><div align="left">batteries in hard rubber casing and PVCseparator</div><div align="left">will come in with battery scrap.</div><div align="left">Depending on the type of battery, its size</div><div align="left">and design, the material composition of a</div><div align="left">starter battery varies. Table 1 compares</div><div align="left">an old type of battery in hard rubber</div><div align="left">casing with a modern type of battery. The</div><div align="left">lead-bearing components of a battery are:</div> | ||
− | + | <div align="left">Tab. 2: Approximate composition of Pbbearing</div><div align="left">components of a starter</div><div align="left">battery</div> | |
− | < | + | <div align="left">The grids of old types of batteries have a</div><div align="left">higher Sb (antimony)-content (~4%) than</div><div align="left">the modern maintenance-free batteries</div><div align="left">(~2%), which instead add Ca(calcium)</div><div align="left"><0,5% to their grid alloy.</div> |
+ | |||
+ | <div align="left">2. Recycling of lead-acid batteries</div><div align="left">2.1 General considerations</div> | ||
+ | |||
+ | <div align="left">As already mentioned, lead-acid battery</div><div align="left">recycling has a long tradition, especially in</div><div align="left">industrialised countries. The battery and</div><div align="left">scrap trade takes back spent batteries free</div><div align="left">of charge or even pays the metal value.</div><div align="left">Because the metallic fraction of a battery</div><div align="left">consists largely of lead, metallurgical</div><div align="left">reprocessing of battery scrap was never a</div><div align="left">serious problem. Recently it has been</div><div align="left">rather the stricter environmental</div><div align="left">requirements that have caused problems</div><div align="left">for secondary lead smelters and made</div><div align="left">lead recycling less economically viable.</div><div align="left">Lead recovery from spent accumulators</div><div align="left">can take two basic routes. Either the</div><div align="left">components of an accumulators like lead,</div><div align="left">plastics, acids, etc. are at first separated</div><div align="left">and then processed individually, or the</div><div align="left">acid is extracted first and the batteries are</div><div align="left">processed as a whole. In the first case,</div><div align="left">recycling materials are recovered from all</div><div align="left">components of a battery. In the second</div><div align="left">case, only lead is recovered (partially also</div><div align="left">residual battery acid), whereby organic</div><div align="left">components are consigned to energy</div><div align="left">recycling. In view of the high pollution</div><div align="left">control standards implemented in</div><div align="left">secondary lead smelters of industrialised</div><div align="left">countries, modern lead recycling does not</div><div align="left">pose a significant health hazard to the</div><div align="left">local population or the environment.</div><div align="left">In developing countries spent lead</div><div align="left">batteries are recycled both in industrial</div><div align="left">facilities and by informal small enterprises.</div><div align="left">Industrial recycling smelters use both the</div><div align="left">grid metal and the lead-containing paste to</div><div align="left">produce secondary lead. The informal</div><div align="left">sector, in contrast, often only uses the</div><div align="left">metallic parts of old batteries (grids,</div><div align="left">terminals, bridges) to produce articles</div><div align="left">such as solders or weights for fishing nets.</div><div align="left">The other parts of the battery are simply</div><div align="left">dumped in the environment.</div><div align="left">Even industrial recycling facilities in</div><div align="left">developing countries employ many manual</div><div align="left">techniques due to cheap labour. Batteries</div><div align="left">are often broken up, emptied, separated</div><div align="left">and charged to the furnaces by hand. The</div><div align="left">lead extracted is refined and cast into</div><div align="left">ingots manually. This creates a potential</div><div align="left">hazard for the workers, the surrounding</div><div align="left">population and the environment (soil,</div><div align="left">ground, water resources, etc.) in general.</div><div align="left">Some secondary smelters also buy up</div><div align="left">pre-sorted battery fractions, e.g. grids and</div><div align="left">lead paste without casings and separators,</div><div align="left">in addition to complete batteries. The lead</div><div align="left">smelters thus save several processing</div><div align="left">stages and do not have to deal with casing</div><div align="left">and separator wastes. They are therefore</div><div align="left">willing to pay a higher price for the</div><div align="left">material supplied. This practice is very</div><div align="left">harmful in environmental terms. Through</div><div align="left">the dispersed pre-sorting activities, lead-</div> | ||
+ | |||
+ | <div align="left">Grid metal, poles, bridges </div> | ||
+ | |||
+ | <div align="left">Pb 96-98%</div><div align="left">Sb 2-4%</div><div align="left">(Ca) <0,5%</div> | ||
+ | |||
+ | <div align="left">Paste </div> | ||
+ | |||
+ | <div align="left">PbSO</div><div align="left">PbO (PbO</div><div align="left">PB 21%</div> | ||
+ | |||
+ | <div align="left">100%</div> | ||
+ | |||
+ | <div align="left">4</div> | ||
+ | |||
+ | <div align="left">gate </div><div align="left">Phone: +49 (0)6196 / 79-3093, Fax: +49 (0)6196 / 79-7352, Email: gate-id@gtz.de, Internet: http://www.gtz.de/gate/</div> | ||
+ | |||
+ | <div align="left">Fundamentals of the Recycling of Lead-Acid Batteries</div> | ||
+ | |||
+ | <div align="left">containing residues and wastes arise in</div><div align="left">many places and it becomes impossible to</div><div align="left">control their proper disposal.</div> | ||
+ | |||
+ | <div align="left">2.1 Metallurgical aspects of lead</div><div align="left">recycling from battery scrap</div> | ||
+ | |||
+ | <div align="left">As described before, the lead bearing raw</div><div align="left">materials extracted from lead-acid battery</div><div align="left">scrap are:</div> | ||
+ | |||
+ | <div align="left">Pb(Sb) </div><div align="left">and bridges</div> | ||
+ | |||
+ | <div align="left">PbO (PbO</div> | ||
+ | |||
+ | <div align="left">PbSO</div><div align="left">paste</div><div align="left">While the first component needs only</div><div align="left">melting, the two other components have to</div><div align="left">be converted by chemical/metallurgical</div><div align="left">processes to obtain lead metal, which</div><div align="left">takes place in the furnace.</div><div align="left">The first type of chemical reaction</div><div align="left">converts PbO (PbO</div><div align="left">reduction process:</div><div align="left">2 PbO + C </div> | ||
+ | |||
+ | <div align="left">PbO</div> | ||
+ | |||
+ | <div align="left">The second type converts PbSO</div><div align="left">PbS, again through a reduction process:</div><div align="left">PbSO4 + 2 C </div> | ||
+ | |||
+ | <div align="left">Finally PbS is converted into Pb through</div><div align="left">the following reactions:</div><div align="left">PbS + Fe </div><div align="left">or</div><div align="left">PbS + 2 PbO </div> | ||
+ | |||
+ | <div align="left">PbS + PbO</div> | ||
+ | |||
+ | <div align="left">The above mentioned chemical reaction</div><div align="left">are sum reaction. That means that there</div><div align="left">are intermediate steps in between. The</div><div align="left">reactions take place in the melting furnace</div><div align="left">at high temperature (900-1200 °C) and</div><div align="left">need additives, which are . carbon (in the</div><div align="left">form of coal) and iron (in the form of iron</div><div align="left">swarf). Impurities are collected in the slag</div><div align="left">which requires for example soda ash as</div><div align="left">liquidifying and slag forming constituent.</div><div align="left">The product of the smelting operation is</div><div align="left">crude lead, which needs subsequent</div><div align="left">refining, and soda slag as residue. Since</div><div align="left">soda slag is water soluble and therefore</div><div align="left">hazardous when brought to landfills,</div><div align="left">modern lead recycling plants use silica</div><div align="left">slag (fayalite slag), which is water</div><div align="left">insoluble. It requires, however, a much</div><div align="left">higher furnace operation temperature of</div><div align="left">approximately 1400°C.</div><div align="left">The refining of crude lead takes place in a</div><div align="left">refining kettle at temperatures between</div><div align="left">400 and 550°C. If only battery scrap is</div><div>used for lead production, two subsequent</div> | ||
+ | |||
+ | <div align="left">refining steps are required:</div><div align="left">1. Removal of Cu which might have</div><div align="left">entered the melts through copper</div><div align="left">wires.</div><div align="left">2. Removal of antimony originated from</div><div align="left">the former grid metal to produce pure</div><div align="left">lead</div><div align="left">While the removal of Cu is done in adding</div><div align="left">elementary sulphur, Sb can be removed</div><div align="left">by selective oxidation or by adding sodium</div><div align="left">nitrate (NaNO</div><div align="left">stirred and a dross formed. The impurities</div><div align="left">are now removed from the melt by</div><div align="left">skimming of the dross formed. It is obvious</div><div align="left">that the success of the refining has to be</div><div align="left">controlled by chemical analysis. The</div><div align="left">refined metal is cast into ingots for</div><div align="left">shipment, sale or further manufacturing.</div> | ||
+ | |||
+ | <div align="left">2.3 Technical steps in battery recycling</div> | ||
+ | |||
+ | <div align="left">In developing countries lead-acid battery</div><div align="left">scrap is normally processed in rotary drum</div><div align="left">furnaces using liquid fuel as energy</div><div align="left">source. Lead bearing feed materials are</div><div align="left">either whole battery packs (grids and</div><div align="left">paste) where the separators have been</div><div>removed or two separate fractions</div> | ||
+ | |||
+ | <div align="left">a) grid metal only and b) paste and other</div><div align="left">fines</div><div align="left">The flow sheet in Fig. 2 shows a semimechanised</div><div align="left">process option for small to</div><div align="left">medium scale battery recycling in</div><div align="left">developing countries. In this option grids</div><div align="left">and paste are separated and individually</div><div align="left">processed. Since the grids (2/5 of the total</div><div align="left">material) are already in the metal stage,</div><div align="left">metallurgical process of converting</div><div align="left">they do not need to go through the whole</div><div align="left">PbO/PbSO</div><div align="left">need to be molten at some 500°C (low</div><div align="left">temperature melt), refined and cast into</div><div align="left">ingots. Thus, energy and time are saved.</div> | ||
+ | |||
+ | <div align="left">2.3.1 Dismantling of battery cases</div><div align="left">and feed preparation</div> | ||
+ | |||
+ | <div align="left">Used batteries are emptied by hand and</div><div align="left">the acid is collected in plastic barrels. If</div><div align="left">the full barrels are kept motionless for</div><div align="left">some time, solid impurities will settle at the</div><div align="left">bottom of the barrels. This process of</div><div align="left">sedimentation may be assisted by adding</div><div>some flocculent. The purified acid is then</div> | ||
+ | |||
+ | <div align="left">decanted and packed for sale. Possible</div><div align="left">customers for the recycled acid is the</div><div align="left">mining and metallurgical industry which</div><div align="left">uses acid in various leaching operations.</div><div align="left">The remaining battery sludge is</div><div align="left">neutralised with lime. After passing</div><div align="left">through a filter press the filter cake may be</div><div align="left">charged together with the fine fraction into</div><div align="left">the melting and reduction furnace.</div><div align="left">In a next step the tops of the acid-free</div><div align="left">batteries are cut off by a guillotine shear</div><div align="left">and the grid packs are removed from the</div><div align="left">battery case. They are fed to a perforated</div><div align="left">grinding drum, which rotates in a water</div><div align="left">basin. By moving the feed in the drum an</div><div align="left">autogenous grinding process starts which</div><div align="left">separates the grids from the separators</div><div align="left">and, more important, the paste from the</div><div align="left">grids. At the same time the perforation of</div><div align="left">the drum acts as a sieve. The fines are</div><div align="left">separated and carried away by the water.</div><div align="left">A bit of lime added to the water neutralises</div><div align="left">the acidic solutions and prevents the drum</div><div>from massive corrosion.</div> | ||
+ | |||
+ | <div align="left">Instead of this labour intensive method</div><div>whole batteries may be crushed in a</div> | ||
+ | |||
+ | <div align="left">hammer mill (Fig. 3) and fed to a grinding/</div><div align="left">washing drum for separation.</div><div align="left">In both cases, the slurry is pumped</div><div align="left">continuously or batchwise to</div><div align="left">sedimentation tanks, where the solids</div><div align="left">settle at the bottom. The clarified liquid is</div><div align="left">returned back to the grinding operation,</div><div align="left">while the sludge at the bottom of the tanks</div><div align="left">passes a filter press or is left to sun-dry.</div><div align="left">The filter or sun dried cake is the main</div><div align="left">feed for the melting and reduction</div><div align="left">operation which will produce almost pure</div><div align="left">lead.</div><div align="left">The second fraction . the coarse material</div><div align="left">(basically grids and separators) . leaves</div><div align="left">the grinding drum at its lower end.</div><div align="left">Separators and grids are separated from</div><div align="left">each other by hand sorting using a slow</div><div align="left">moving transmission belt (Fig. 4). The</div><div align="left">metal fraction is the main feed for the low</div><div>temperature melt producing a PbSb-alloy.</div> | ||
+ | |||
+ | |||
+ | Empty battery cases and covers with the | ||
+ | |||
+ | attached poles, bridges and remaining grid | ||
+ | |||
+ | parts are charged to a wet hammer mill, | ||
+ | |||
+ | where metal parts and remaining paste | ||
+ | |||
+ | are separated from the plastic. The output | ||
+ | |||
+ | |||
+ | <div align="left">of the mill passes a perforated drum,</div><div align="left">where solids and slurry are separated.</div><div align="left">While the solids (metal and plastic parts)</div><div align="left">are hand sorted, the slurry with the fines is</div><div align="left">added to the slurry obtained from the</div><div align="left">grinding drum. The solid metal parts</div><div align="left">supplement the feed of the low</div><div align="left">temperature melt.</div><div align="left">The plastic residues of the dismantling</div><div align="left">operation either have to be dumped (in the</div><div align="left">case of PVC-separators) or can be used</div><div align="left">as fuel (PP, cellulose, hard rubber) in</div><div align="left">cement factories. In this case it is</div><div align="left">important that no lead remains in the</div><div align="left">plastic product.</div> | ||
+ | |||
+ | <div align="left">2.3.2 Melting and reduction operation</div><div align="left">of paste and battery fines</div> | ||
+ | |||
+ | <div align="left">The filter or sun baked cake of paste is</div><div align="left">charged to a short rotary drum furnace</div><div align="left">(Fig. 5) where the charge is melted</div><div align="left">together with slag forming constituents</div><div align="left">(soda ash = Na</div><div align="left">additives (Fe-swarf, coal). The ratio of the</div><div align="left">feed materials Pb-fines : Fe-swarf : Soda</div><div align="left">ash : coal is approximately 10:2:1:0,5. The</div><div align="left">energy needed for the process is obtained</div><div align="left">from the burning of the coal within the</div><div align="left">furnace and by an additional burner</div><div>running on heavy fuel oil, paraffin,</div> | ||
+ | |||
+ | <div align="left">diesel, waste engine oil, etc. To save</div><div>energy and to achieve a higher furnace</div> | ||
+ | |||
+ | <div align="left">temperature the combustion air should be</div><div align="left">preheated.</div><div align="left">Depending on the temperature and the</div><div align="left">amount of feed material in the furnace, the</div><div align="left">reaction time will be 2-3 h. Due to the</div><div align="left">difference in specific weight the molten</div><div align="left">lead produced settles at the bottom part of</div><div align="left">the furnace. When enough lead has</div><div align="left">accumulated, it is tapped into a mobile</div><div align="left">ladle and transported in liquid stage to the</div><div align="left">refining kettle.</div><div align="left">With less PbO/PbS in the slag and more</div><div align="left">Pb-metal produced the viscosity of the</div><div align="left">slag increases. This hampers the</div><div align="left">separation of the small Pb-droplet from the</div><div align="left">slag. To overcome this problem either</div><div align="left">more soda ash has to be added or the</div><div align="left">temperature in the furnace must be</div><div align="left">increased. Both solutions have negative</div><div align="left">effects. While the first measure increases</div><div align="left">the amount of slag which finally needs to</div><div align="left">be discarded, the second measure leads</div><div>to higher energy consumption and</div> | ||
+ | |||
+ | <div align="left">evaporation of lead into the off-gas.</div><div align="left">It is more advisable to tap the lead before</div><div align="left">the optimum of recovery is achieved and</div><div align="left">to leave the remaining lead-rich slag in the</div><div align="left">furnace for a second or third cycle with</div><div>new feed material.</div> | ||
+ | |||
+ | <div align="left">After a number of production cycles the</div><div align="left">amount of slag in the furnace will be too</div><div align="left">large to continue the operation. By adding</div><div align="left">a bit more coal and fresh soda ash a slag</div><div align="left">wiith a low Pb content (<9% Pb) can be</div><div align="left">achieved which is then tapped from the</div><div align="left">furnace together with the finally produced</div><div align="left">lead. While the lead metal is forwarded for</div><div align="left">refining the slag has to be dumped.</div><div align="left">Off-gas and flue dust from the operation is</div><div align="left">sucked of and treated in the off-gas</div><div align="left">cleaning system.</div> | ||
+ | |||
+ | <div align="left">2.3.3 Melting of grids, terminals and</div><div align="left">bridges</div> | ||
+ | |||
+ | <div align="left">The coarse fraction of the crushed battery</div><div align="left">scrap is fed to a crucible furnace, melting</div><div align="left">kettle or rotary drum furnace. By adding a</div><div align="left">bit of soda ash the charge is melted and</div><div align="left">stirred for some while. During this</div><div align="left">operation insoluble impurities will settle on</div><div align="left">top of the melt and join the soda ash slag,</div><div align="left">which is skimmed off at the end of the</div><div align="left">melting operation. Gases and flue dust</div><div align="left">from the process are soaked away and</div><div align="left">passed over to the gas cleaning system.</div><div align="left">The melt is cast into ingots or transferred</div><div>in liquid stage to the refining kettle.</div> | ||
+ | |||
+ | <div align="left">2.3.4 Refining of crude lead</div> | ||
+ | |||
+ | <div align="left">First, the lead tapped from the furnace has</div><div align="left">to be cleaned from residual oxides and</div><div align="left">slag. For that purpose a bit of pitch and</div><div align="left">saw dust is added. After stirring for a while</div><div align="left">the impurities settle at the surface and are</div><div align="left">skimmed off (Fig. 6).</div><div align="left">Crude lead originating from battery scrap</div><div align="left">is normally alloyed with copper and</div><div align="left">antimony (with traces of Ca, Sn, As, Zn).</div><div align="left">In order to remove the unwanted elements</div><div align="left">two further refining operations have to be</div><div align="left">carried out.</div><div align="left">By adding sulphur to the lead melt and</div><div align="left">after stirring for some time, a Pb/Cu</div><div>(and if present with minor parts of</div> | ||
+ | |||
+ | <div align="left">Zn, Sb, As) is formed and skimmed off.</div><div align="left">This de-copperisation step should be</div><div align="left">carried out at least two times to secure the</div><div>refining result.</div> | ||
+ | |||
+ | <div align="left">The de-copperised lead still contains a</div><div align="left">large amount of antimony (and maybe</div><div align="left">some Sn, As). All of these elements can</div><div align="left">be removed by oxidation. For that purpose</div><div align="left">air or oxygen-enriched air is blown into the</div><div align="left">melt and stirred. The different oxides</div><div align="left">formed settle at the surface and can be</div><div align="left">skimmed off. The oxidising process is</div><div align="left">completed when mainly lead oxide is</div><div align="left">formed.</div><div align="left">Instead of oxidising the impurities by</div><div align="left">injecting air, sodium nitrate (NaNO</div><div align="left">be added. Here again a dross containing</div><div align="left">the impurities (and lead) is formed, which</div><div>is skimmed off afterwards. All refining by</div> | ||
+ | |||
+ | <div align="left">byproduced</div><div align="left">or residues should be processed</div><div align="left">to recover lead and other valuables</div><div align="left">components.</div><div align="left">The refining processes and the purity of</div><div align="left">the refined lead are monitored by chemical</div><div>analysis.</div> | ||
+ | |||
+ | <div align="left">The off-gases of each of the processes</div><div align="left">are collected and fed into the central gas</div><div align="left">cleaning system of the plant.</div> | ||
+ | |||
+ | <div align="left">2.3.5 Gas cleaning system</div> | ||
+ | |||
+ | <div align="left">Due to the lack of environmental</div><div align="left">legislation and monitoring, and due to lack</div><div align="left">of funds industrial operations in developing</div><div align="left">countries often have very poor emission</div><div align="left">control and off-gas cleaning systems.</div><div align="left">Because of the hazardous potential of the</div><div align="left">majority of the elements and compounds</div><div align="left">which are involved in lead smelting and</div><div align="left">refining (Pb, Sb, As, SO</div><div align="left">gas cleaning standard must be achieved</div><div align="left">and should be compulsory.</div><div align="left">Therefore, all fumes, gases and dusts</div><div align="left">which are generated during the different</div><div align="left">production steps should be collected and</div><div align="left">treated in a central gas cleaning system. A</div><div align="left">standard off-gas treatment system</div><div align="left">normally consists at least of a hot dust</div><div align="left">chamber and/or hot cyclone, a venturi</div><div>washer and a wet scrubber (Fig. 7).</div> | ||
+ | |||
+ | <div align="left">From the furnace the hot gases pass</div><div align="left">through a hot dust chamber and/or a hot</div><div align="left">cyclone where most of the coarse dust</div><div align="left">particles are separated from the gas</div><div>stream. From there the off-gas feed into a</div> | ||
+ | |||
+ | <div align="left">wet gas cleaning system which consists of</div><div align="left">a venturi washer and a wet scrubber.</div><div align="left">The task of the venturi washer is the</div><div align="left">collection of the fine dust particles. Water</div><div align="left">and off-gas is mixed under high turbulence</div><div align="left">and gas/water spray velocity, forming a</div><div align="left">fine slurry, which is pumped to a</div><div align="left">sedimentation tank.</div><div align="left">The more or less dust free off-gas</div><div align="left">afterwards enters a wet scrubber. Here,</div><div align="left">the main task is the removal of the SO2-</div><div align="left">gas of the off-gas. By adding lime to the</div><div align="left">scrubber liquid, the SO2 in the off-gas will</div><div align="left">react with the lime water forming gypsum.</div><div align="left">The gypsum is insoluble in water and</div><div align="left">precipitates. Again, the fine slurry of the</div><div align="left">second scrubber is pumped into a</div><div align="left">sedimentation tank. The clean gas leaves</div><div align="left">the whole process via the main chimney.</div><div align="left">In the sedimentation tank small amounts</div><div align="left">of lime and flocculent neutralise the slurry</div><div>and assist the sedimentation of the fines.</div> | ||
+ | |||
+ | <div align="left">The sludge passes a filter press producing</div><div align="left">a filter cake. The extracted water is recirculated</div><div align="left">to the scrubbers while the filter</div><div align="left">cake is fed back into the melting and</div><div>reduction furnace.</div> | ||
+ | |||
+ | <div align="left">3. Environmental considerations</div> | ||
+ | |||
+ | <div align="left">As already mentioned, the potential health</div><div align="left">and environmental risk involved when</div><div align="left">processing battery scrap is very high.</div><div align="left">Depending on the level of mechanisation</div><div align="left">and environmental standards, the</div><div align="left">following environmental hazards can arise:</div> | ||
+ | |||
+ | <div align="left">• </div><div align="left">acid spilled when batteries are emptied</div> | ||
+ | |||
+ | <div align="left">• </div><div align="left">battery scrap is stored without</div><div align="left">protection</div> | ||
+ | |||
+ | <div align="left">• </div><div align="left">(e.g. lead-containing dust, soot, SO</div><div align="left">chlorides, dioxins, etc.) when battery</div><div align="left">scrap is smelted due to:</div> | ||
+ | |||
+ | <div align="left">- </div><div align="left">including its organic parts (casing,</div><div align="left">PVC separators in older battery</div><div>types)</div> | ||
+ | |||
+ | <div align="left">- </div><div align="left">vapours during the smelting and</div><div align="left">refining process</div> | ||
+ | |||
+ | <div align="left">- </div><div align="left">treatment</div> | ||
+ | |||
+ | <div align="left">• </div><div align="left">the corresponding landfill design that</div><div align="left">would prevent leaching and dust</div><div align="left">formation</div> | ||
+ | |||
+ | <div align="left">• </div><div align="left">refining process</div> | ||
− | + | <div align="left">• </div><div align="left">such as battery casings and PVC</div><div align="left">separators.</div><div align="left">Workers, too, are exposed to raised levels</div><div align="left">of harmful substances in such facilities.</div><div align="left">This generates considerable health risks if</div><div align="left">appropriate precautionary measures are</div><div align="left">not taken (respiratory equipment, washing</div><div align="left">facilities, separate eating and resting</div><div>rooms, regular examinations, etc.).</div> | |
− | |||
<br> | <br> | ||
Line 35: | Line 168: | ||
[[Disposal and Recycling of Batteries and other Solar Energy Components|⇒ Back to Disposal and Recycling]] | [[Disposal and Recycling of Batteries and other Solar Energy Components|⇒ Back to Disposal and Recycling]] | ||
+ | [[Category:Solar]]'''' | ||
+ | <div align="left">Batteries are used whenever electrical</div><div align="left">energy is needed, but there is neither a</div><div align="left">direct connection to the public electricity</div><div align="left">grid nor a generator-based stand-alone</div><div align="left">supply. Batteries store electrical energy as</div><div align="left">chemical energy. During discharge, the</div><div align="left">chemical energy is re-converted into</div><div align="left">electrical energy. Depending on the</div><div align="left">battery system, this process is either</div><div align="left">irreversible or reversible. There are two</div><div align="left">types of batteries: 'primary batteries' and</div><div align="left">'secondary batteries'.</div> | ||
+ | |||
+ | <div align="left">Lead-acid batteries are called .secondary</div><div align="left">batteries. or accumulators since they are</div><div align="left">rechargeable. They again can be divided</div><div align="left">into starter and industrial batteries. Starter</div><div align="left">and industrial batteries are used to provide</div><div align="left">large quantities of energy (e.g. to start a</div><div align="left">car, operate electric vehicles, as energy</div><div align="left">storage medium for solar applications, as</div><div align="left">short-term emergency power source, etc.).</div><div align="left">Units generally weigh from a few</div><div align="left">kilograms to one ton.</div> | ||
+ | |||
+ | <div align="left">In the lead-acid battery sector, starter</div><div align="left">batteries have by far the largest share. In</div><div align="left">1995, approx. 96 million units were</div><div align="left">produced worldwide (source: Battery</div><div align="left">Council International). An annual</div><div align="left">production growth rate of < 2% is</div><div align="left">expected. Especially in developing</div><div align="left">countries, where the number of cars is</div><div align="left">growing over-proportionately, high growth</div><div align="left">rates in the use of lead-acid batteries are</div><div align="left">to be expected. Studies carried out in</div><div align="left">Botswana indicate that the number of</div><div align="left">batteries used in the automobile sector will</div><div align="left">grow by 40-50% over the period from 1995</div><div align="left">to 2005 (source: GTZ waste management</div><div align="left">project). If we consider China alone, the</div><div align="left">most populous country of the world, which</div><div align="left">currently starts to introduce private car</div><div align="left">transport, it is obvious that high growth</div><div align="left">rates in the consumption of starter</div><div align="left">batteries must be expected in the future,</div><div align="left">especially in developing countries.</div><div align="left">Returning used lead batteries to the</div><div align="left">recycling loop has a long tradition. Thanks</div><div align="left">to the compactness of a battery, its high</div><div align="left">lead proportion (>95%) and relatively high</div><div align="left">metal prices, it has been worth while for</div><div align="left">consumers to return their own or collected</div><div align="left">car batteries to the scrap trade or</div><div align="left">secondary smelters. The return rate of</div><div align="left">spent batteries was thus already high in</div><div align="left">times when catchwords such as resource</div><div align="left">conservation and environmental</div><div align="left">protection, recycling, closed-loop materials</div><div align="left">management etc. did not yet play a role.</div><div align="left">Even today, the success of lead battery</div><div align="left">recycling in developing countries</div><div align="left">continues to be determined largely by the</div><div align="left">potential earnings of scrap collectors and</div><div align="left">traders. In industrialised countries,</div><div align="left">statutory requirements to take back spent</div><div align="left">batteries have compensated for the loss of</div><div align="left">economic incentives in spent battery</div><div align="left">return.</div><div align="left">In most European countries, battery</div><div align="left">retailers are under obligation to take back</div><div align="left">spent batteries. Lead batteries also come</div><div align="left">from repair workshops, the reprocessing of</div><div align="left">scrap car bodies and at municipal</div><div align="left">collection centres. In Germany, for</div><div align="left">example, this well functioning and effective</div><div align="left">collection system has led to a return rate</div><div>of more than 95% for starter batteries and ''<font size="3"><font size="3"><div align="left">almost 100% for industrial batteries. In</div><div align="left">developing countries, too, return rates of</div><div align="left">up to 80% can be achieved where buyingup</div><div align="left">structures for spent batteries are in</div><div align="left">place. In Zimbabwe (source: Central</div><div align="left">African Batteries) for example, the entire</div><div align="left">demand for local battery production is</div><div align="left">covered by recycling of used batteries.</div></font></font>'''<font size="3"><font size="3"><div align="left">1. Battery scrap – raw material for</div><div align="left">recycling</div></font></font><font size="3"><font size="3"><div align="left">The major source of raw material for lead</div><div align="left">recycling are starter batteries from motor</div><div align="left">vehicles. Modern car batteries consist of a</div><div align="left">PP (polypropylen)-casing, plates (grids</div><div align="left">and paste), connectors/poles and bridges,</div><div align="left">and PP-separators as insulators between</div><div align="left">the plates (Fig 1). Paste consists of Pb,</div><div align="left">PbO</div><div align="left">reactions which take place during charge</div><div align="left">and discharge of a lead acid battery are:</div><div align="left">charging:</div><div align="left">2PbSO</div></font></font><font size="1"><font size="1">2</font></font><font size="3"><font size="3">and PbSO</font></font><font size="1"><font size="1">4</font></font><font size="3"><font size="3">. The electro-chemical</font></font><font size="1"><font size="1">4</font></font><font size="3"><font size="3">+ 2H2O</font></font><font size="3"><font size="3">→</font></font><font size="3"><font size="3">PbO</font></font><font size="1"><font size="1">2</font></font><font size="3"><font size="3">+ Pb + H</font></font><font size="1"><font size="1">2</font></font><font size="3"><font size="3">SO</font></font><font size="1"><font size="1">4</font></font><font size="3"><font size="3"><div align="left">discharging:</div><div>PbO</div></font></font><font size="1"><font size="1">2</font></font><font size="3"><font size="3">+ Pb + H</font></font><font size="1"><font size="1">2</font></font><font size="3"><font size="3">SO</font></font><font size="1"><font size="1">4</font></font><font size="3"><font size="3">→</font></font><font size="3"><font size="3">2PbSO</font></font><font size="1"><font size="1">4</font></font><font size="3"><font size="3">+ 2H2O</font></font>'''''</div> | ||
− | + | <div align="left">Older types of batteries have a hard</div><div align="left">rubber casing and PVC (polyvinylchloride)-</div><div align="left">separators instead of casings and</div><div align="left">separators from PP. In some developing</div><div align="left">countries (e.g. Zimbabwe) these types of</div><div>batteries are still produced and in use.</div> |
Revision as of 14:00, 22 June 2010
'44%56%460%2) 19%Information Service /gtz, PO Box 5180, 65726 Eschborn, Germanymetal from grids, terminals2)lead oxides, part of the paste4lead sulphate, part of the2) into Pb through a→2 Pb + CO22+ C→Pb + CO24into→PbS + 2 CO2→Pb +FeS→3 Pb + SO22→2 Pb + SO23). The lead in the kettle is4into lead metal. They only2CO3) and reaction2Sdross3) can2, etc.), a certainsoil and groundwater contamination bywind dispersal of lead dust if crushedsubstantial atmospheric emissions2,processing the entire batteryinadequate removal of gases andabsent or inadequate flue gasuse of water-soluble soda slag withoutopen storage of slag and ashes of theopen tipping of residues and wastes
'''''''''''''''''''''''''''''''''''''''''''
Empty battery cases and covers with the
attached poles, bridges and remaining grid
parts are charged to a wet hammer mill,
where metal parts and remaining paste
are separated from the plastic. The output
Existing Documents:
- Presentation: recycling systems for PV-batteries, Andi Michel, Addis Ababa, October 2008
- Gate, GTZ: Vest, Heino: Fundamentals of the Recycling of Lead-Acid Batteries, 2002 (279 kB)
- Pv-batteries, Silvia Schubert
⇒ Back to Disposal and Recycling'