Difference between revisions of "DC Mini-grids"
***** (***** | *****) |
***** (***** | *****) |
||
Line 1: | Line 1: | ||
+ | = Introduction = | ||
+ | Changing patterns in electricity generation and consumption over past decades have brought new life to the debate around Alternating Current (AC) vs. Direct Current (DC) electricity supply from distributed generation. Direct Current distinguishes itself from Alternating Current through the fact that electric charge flows in a constant direction. | ||
+ | |||
+ | Direct Current is native to solar PV electricity generation, battery storage and a range of common, low-power household and commercial applications, such as LED-lighting, consumer electronics (e.g. TV, radio, mobile phones) and variable speed drives in electric motors (e.g. for fans or pumps). With an increasing reliance on these components / applications, DC systems have, in many cases, become a technically and economically viable alternative to ‘traditional’ AC systems. | ||
+ | |||
+ | [[Category:PV_Mini-grid]] | ||
[[Category:Mini-grid]] | [[Category:Mini-grid]] | ||
− |
Revision as of 11:16, 3 December 2015
Introduction
Changing patterns in electricity generation and consumption over past decades have brought new life to the debate around Alternating Current (AC) vs. Direct Current (DC) electricity supply from distributed generation. Direct Current distinguishes itself from Alternating Current through the fact that electric charge flows in a constant direction.
Direct Current is native to solar PV electricity generation, battery storage and a range of common, low-power household and commercial applications, such as LED-lighting, consumer electronics (e.g. TV, radio, mobile phones) and variable speed drives in electric motors (e.g. for fans or pumps). With an increasing reliance on these components / applications, DC systems have, in many cases, become a technically and economically viable alternative to ‘traditional’ AC systems.