Knowledge fuels change
For over a decade, Energypedia has shared free, reliable energy expertise with the world.
We’re now facing a serious funding gap.
Help keep this platform alive — your donation, big or small, truly matters!
Thank you for your support
Difference between revisions of "Wind Energy - Physics"
***** (***** | *****) |
***** (***** | *****) |
||
| Line 17: | Line 17: | ||
Because power is energy per time unit, combining the two equations leads back to the primary mentioned basic relationship of wind energy utilisation | Because power is energy per time unit, combining the two equations leads back to the primary mentioned basic relationship of wind energy utilisation | ||
| − | <math>P=\dot{E}=\frac{1}{2}\dot{m}v^2=\frac{1}{2}\rho A v^3</math> | + | <math>P=\dot{E}=\frac{1}{2}\dot{m}v^2=\frac{1}{2}\rho A v^3</math> |
| + | |||
| + | |||
| + | |||
| + | The power of a wind-stream is transformed into mechanical energy by a wind turbine through slowing down the moving air-mass which is crossing the rotor area. For a complete extraction of power the air-mass would have to be stopped completely, leaving no space for the following air-masses. | ||
Revision as of 18:05, 16 May 2011
Wind Power
The power P of a wind-stream, crossing an area A with velocity v is given by
It varies proportional to air density , to the crossed area A and to the cube of wind velocity v.
The Power P is the kinetic energy
of the air-mass m crossing the area A during a time interval
.
Because power is energy per time unit, combining the two equations leads back to the primary mentioned basic relationship of wind energy utilisation
The power of a wind-stream is transformed into mechanical energy by a wind turbine through slowing down the moving air-mass which is crossing the rotor area. For a complete extraction of power the air-mass would have to be stopped completely, leaving no space for the following air-masses.



















