Difference between revisions of "Solar-Powered Pumps for Improved Irrigation"

From energypedia
***** (***** | *****)
m
***** (***** | *****)
Line 20: Line 20:
  
 
{{#widget:YouTube|id=wMBRC_OLJ_o|height=200|width=400}}<br/>
 
{{#widget:YouTube|id=wMBRC_OLJ_o|height=200|width=400}}<br/>
 +
  
 
= Clean Energy Solution<br/> =
 
= Clean Energy Solution<br/> =
[[File:IDE solar-powered pumps.png|thumb|right|180px|A solar powered-pump, © Powering Agriculture]][http://www.ideorg.org/ iDE’s] '''Clean Irrigation Solution (CIS)''' can compete with fossil fuel pumps both in terms of cost and enhancing agricultural productivity. CIS’s universal piston pump can run on a variety of power sources (solar steam power, photovoltaic power, and grid-connected alternating current (AC) where available). The system accesses groundwater from deeper depths than conventional pumps, and maintains a slow, steady discharge rate. iDE will work with local businesses to sell and service the CIS.<ref name="Powering Agriculture: iDE: http://poweringag.org/2013-winners/ide">Powering Agriculture: iDE: http://poweringag.org/2013-winners/ide</ref><br/>
+
[[File:IDE solar-powered pumps.png|thumb|right|180px|A solar powered-pump, © Powering Agriculture]][http://www.ideorg.org/ iDE’s] '''Clean Irrigation Solution (CIS)''' can compete with fossil fuel pumps both in terms of cost and enhancing agricultural productivity. CIS’s universal piston pump can run on a variety of power sources (solar steam power, photovoltaic power, and grid-connected alternating current (AC) where available). The system accesses groundwater from deeper depths than conventional pumps, and maintains a slow, steady discharge rate. iDE will work with local businesses to sell and service the CIS.<br/>
 +
 
 +
Recently, field testing of pumps has been started in Nepal: read more in the [http://poweringag.org/news/15/01/14/january-2015-newsletter Powering Agriculture January 2015 Newsletter].<br/>
 +
 
 +
Locations: [[Honduras Energy Situation|Honduras]], [[Nepal Energy Situation|Nepal]], and [[Zambia Energy Situation|Zambia]]<br/>
  
Locations: [[Honduras Energy Situation|Honduras]], [[Nepal Energy Situation|Nepal]], and [[Zambia Energy Situation|Zambia]]
 
  
 
= Impact =
 
= Impact =

Revision as of 08:50, 27 January 2015

Overview

Project Solar-Powered Pumps for Improved Irrigation in Honduras, Nepal, Zambia
Collaborators PRACTICA Foundation (Netherlands), Futurepump Ltd (UK)
Location Applied Honduras; Nepal; and Zambia
Website www.ideorg.org


Globally, more than 800 million farmers manually lift and haul water to irrigate their farmland. These farmers can drastically decrease their labor and expand their irrigable area by employing motorized pumps. Currently, the most accessible and affordable pump solutions are four to seven horsepower pumps powered by increasingly expensive fossil fuels. Consequently, many farmers are either unable to provide sufficient irrigation to their crops, and/or must allocate a sufficient portion of their income to environmentally-hazardous fossil fuels.



Clean Energy Solution

A solar powered-pump, © Powering Agriculture

iDE’s Clean Irrigation Solution (CIS) can compete with fossil fuel pumps both in terms of cost and enhancing agricultural productivity. CIS’s universal piston pump can run on a variety of power sources (solar steam power, photovoltaic power, and grid-connected alternating current (AC) where available). The system accesses groundwater from deeper depths than conventional pumps, and maintains a slow, steady discharge rate. iDE will work with local businesses to sell and service the CIS.

Recently, field testing of pumps has been started in Nepal: read more in the Powering Agriculture January 2015 Newsletter.

Locations: Honduras, Nepal, and Zambia


Impact

Maintaining a solar station © Powering Agriculture

iDE’s goal is to compete with fossil fuel-powered pumps currently on the market, and ultimately shift famers’ preference toward clean energy pumping solutions. This consumer shift would have a remarkable environmental and socio-economic effect on agrarian communities. Using the CIS instead of a fossil fuel engine can reduce annual carbon emissions by as much as 250 kilograms per 1,000 irrigated square meters.[1]

Organization

iDE has over 30 years’ experience in developing appropriate agricultural products and engaging the private sector to supply these products to smallholder farmers, improving long-standing agricultural practices. This project is implemented in partnership with PRACTICA Foundation (a Dutch organization that has a focus on the commercial application of technology in the field of water and energy), and Futurepump Ltd.(a UK manufacturer of efficient irrigation pumps).[2]

Further Information

References