Separator sheeting
Separator sheeting sheeting GE EnergyJenbacher gas engines

 $EECC = GTZ$ Training for Biogas Design FECC - GTZ Institutes - Beijing

From Biogas to electricity-CHP-use in operation

Thomas Elsenbruch

ecomagination a GE commitment

GE Energy Infrastructure

Employees: 65,000 • '08 revenue: \$38.6B • Operating in 140 countries

Power & Water

- Power generation
- Renewables
- Gas Engines
- Nuclear
- Gasification
- Water treatment
- Process chemicals

- Contractual agreements
- Smart Grid
- Field services
- Parts & repairs
- Optimization technologies
- Plant management

- Subsea, offshore & onshore
- LNG & Pipelines
- Pipeline integrity
- Refining
- Processing

GE's Jenbacher gas engines

A leading manufacturer of gas fueled reciprocating engines for power generation

- 1,700 employees worldwide, 1,300 in Jenbach/Austria
- 9,100+ delivered engines / 10,800+ MW worldwidePower range from 0.25 MW to 4 MW

Fuel flexibility

Natural gas, biogas, flare gas, landfill gas, steel gas, coal mine gas

Advanced system solutions

 Generator sets, container modulescogeneration, trigeneration, CO₂-fertilization

Environmental benefits

Low emissionsecomagination solutions

Lifetime services plus (parts, repair, CSA, upgrades) 2,000 units under CSA

Product Program 2010:Biogas, Sewage Gas and Landfill Gas

The whole Jenbacher biogas fleet:

- •Sewage gas: more than 450 installed engines (313 MW)
- •Biogas: more than 1500 installed engines (1065 MW)
- •Landfill gas: more than 1400 installed engines (1370MW)

Jenbacher - Biogas engines in some EU and Asian countries

Installed in Biogas plants up to 31.12.2009:

Gas engines play core role in biogas plants

biogas-cogeneration units are core part of biogas plant, in combinationwith enhanced digester-technology

Targets of development optim. Biogas engine

GE imagination at work

Target:Optimized efficiency in operation with Biogas

Basic enginesOptimized specific output

Frame conditions:•Biogas •Exhaust emissions•Thermodynamic Optimum

Internal efficiency – combustion duration

Higher compression-ratio helps the efficiency

Comparison of efficiency of different concepts

The optimum of compression ratio and BMEP must be found

GEJ spark plugs/ ignition systemdevelopment

WWTP Straß/A JMS 208 GS.B.LC

WWTP Strass Zillertal/A1 x JMS 208 GS B.LC

Electrical ouput 330 kW Thermal output420 kW

Electr. efficiencyη _{el} = 39%
Tl Therm. efficiency η_{th} = 48%

Optimization of combustion Type 2/3/4

Optimized Combustion

Acceleration by "heart-shaped" piston bowl

Minimized crevice volume

- •30% lower HC
- •30% lower CO

increased compression ratio in combination mit "Miller"-timing

13/ GE Jenbacher / Thomas ElsenbruchAugust 13, 2010

Efficiency increase in Biogas

14/August 13, 2010

Important criteria for gas engine selection

Lean-burn combustion with gas engines

•Lean combustion to ensure low NOx emission limits (500 mg/Nm³ and lower) •Reduced combustion temperatures enable higher specific outputs and efficiency

GE imagination at work

Details: "Gas engine concept"

Advantages:

- •"Cross flow" cylinder head (external exhaust gas manifolds)
- • Clear separation of cold mixture inlet and hot exhaust gas
- \bullet Exactly defined thermal zones in the cylinder head
- •Long cylinder head life time
- \bullet Better accessibility to the exhaust gas manifolds

LEANOX® - Lean-burn combustion control

•Sensors in non critical measurement ranges (pressure, temperature, deposits...)

- •Reliable and durable compliance with exhaust emission limit at changing operational conditions (fuel gas compositions...)
- •Controlled combustion and subsequently controlled stress of various components (valves, cylinder heads, spark plugs...)

GE imagination at work

Important criteria for gas engine selection

- •Select a specifically designed biogas cogeneration unit
- Modern gas engine concept ("Cross-flow" cylinder head, no derived Diesel engine)
- •Turbocharged engine for high power density and efficiency
- •Electronic NOx-emission control, preferably with sensors outside the combustion chamber and exhaust gas manifolds
- Enhanced ignition control system (preferably with integrated
electronic ignition voltage controll electronic ignition voltage control)
- •Knocking control (at least 1 sensor/ cylinder-line)
- Enhanced engine control system with alarm management (remote monitoring, diagnosis and control recommended)
- Interfaces between engine control and system control

Typical operation and maintenance figures

•Main maintenance intervals:

- Every 1,000 (2,000) ophs: spark plug and valve re-gapping, lube oil change (according oil analysis)
- Btw 5,000 and 10,000 ophs: overhaul of turbocharger, water pump…
- – Minor or top-end overhaul btw. 15,000 and 30,000 ophs depending on manufacturer and engine condition (change of cylinder heads, pistons, liners, …)
- Major overhaul: btw. 40,000 and 60,000 ophs depending on manufacturer: exchange of core-engine
- •Specific maintenance cost:
	- $\,$ 1.5 2 US¢/kWh for preventive and corrective maintenance
	- Major overhaul: Appr. 60% of the initial investment for the genset.

O&M costs of genset appr. same as initial genset investment

- Achieved 8,740 out of 8,760 oph/y in ´05
- 99.8% Availability with Biogas
- average 98+% fleet reliability at Biogas (450+ units)

Heat recovery opportunities with gas engines

Cogeneration of heat and power (CHP)

CHP systems utilize the waste heat incurred during engine operation to generate overall plant efficiencies of more than 90%.

Energy savings through CHP technology

 $(1 - 2.5/4.33) \times 100 = 42\%$ savings of primary energy with cogeneration

Temperature levels of different heat sources

Recoverable Heat w/ Integration 70/90°C

Hot water circuit

J 312 GS-C225

Heat utiliziation in Biogas-CHP JMS 312 GS-B.L (C225)

Therm. Efficiency: 40,3%

Steam production with Gas engines

Foto: Biogas Kogel – 1 x JMC 420 GS-B.LC

JMS 312 GS-B.L

Electr. Output: 526 kW

Therm. Output Hot wat. 65/85°C: 325 kW Sat. steam, 8 bar: 345 kg/h (= 231 kW)LT-IC heat: 19 kW

Therm. eficciency: 42,7%

Feed water must be conditioned!

Advantages of trigeneration systems over conventional refrigeration technology

- Operated with heat, utilizing inexpensive "excess energy"
- No moving parts in absorption chillers, no wear and therefore low maintenance expenses
- Noiseless operation of the absorption system
- Low operating costs and life-cycle costs
- Water as refrigerant, no use of harmful substances for the atmosphere

Trigeneration with gas engines

Drying process with Gas engines

JMS 312 GS-B.L

Brickyard LUNDGAARD Stoholm - Denmark 1 x JMS 212 GS-N.LC

What is the right path with biogas?

Biogas utilisation - An effective biofuel

German Federal Agency for Renewable Resources - FNR

What is the right path with biogas?

Biogas utilisation – GHG-savings

GE imagination at work

Data Source:

Optimierungen für einen

Summary – Biogas in CHP

- •Biogas plants are operated weather independent –
for base load supply
- •Biogas plants can be seen as state-of-the-art technology
- •Because of low energetic density of source materials,biogas should be used decentralized
- •Using biogas in CHP-modules generates highest GHG-savings

Important design criteria

Gas Requirements :

- •gas pressure
- •methane number
- •gas temperature/relative Humidity
- •heating value fluctuation
- •contaminations
	- –– Sulphur,
	- –Halogens,
	- –Ammonia,
	- –– Silica.......

In general these are important criteria for Non Natural gases

Gas – plant:

Gas Requirements :

- Gas temperature < 40°C
- $\overset{\text{\tiny{d}}}{\leadsto}$ mixture temperature $\overset{\text{\tiny{d}}}{\mathscr{W}}$
- للمصمر مرمط والرزمر بروا امصراف والمعاريا $\%$ limited by rubber materials of gas train \mathbf{W}

•relative humidity < 80% (at every gas temperature) $\%$ condensate in gas supply $\frac{1}{2}$ –filter; pressure regulator; gas train,.....–condensate in engine/intercooler

Relative humidity:

Gas humidity / cooling:

Gas Requirements TI 1000 – 0300:

Reduce humidity:

Gas pipe + pre heating \rightarrow second best
solution solution

- * Only reduction of rel humidity; works only at a low gas temperature level
- \rightarrow Water content is not changed
- 4Avoid condensate drain off in subsequent parts
- 4Gas cooling because of gas pipe mounted in soil possible but not sure

Active humidity reduction \rightarrow best solution

- \blacktriangleright Effective reduction of water content
- 4 Reduce risk of having condensate in the gas system
- ▶ Reduce risk of corrosion! \blacktriangleright

Active gas drying / biogas example:

Schmack 1/Deutschland 1 x JMS 312 GS-B.L500 KWel

Gas cooling / drying / dehumidification

Electr. chiller

Layout example:

Gas Requirements TI 1000 - ⁰³⁰⁰

Sulfur:

 $H₂S$ ²S < 700 mg/10 kWh (without catalyst) < 200 mg/10 kWh (with catalyst) $\mathbb Q$ Standard maintenance schedule

 Σ H₂S < 1200 mg/10 kWh $\overset{\text{\tiny{(1)}}}{\rightarrow}$ "modified" maintenance schedule

 ψ acidification of oil \mathcal{U}

 ψ reduced Oil lubricity \mathscr{U}

 \mathfrak{B} SO_x + H₂O \rightarrow corrosid $x + H_2O \rightarrow$ corrosion

 $\%$ deposits in exhaust gas heat exchanger, when temperature is
helow dew point below dew point

Gas Requirements TI 1000 – ⁰³⁰⁰

Sewage Treatment PlantSulfate deposits

exhaust gas temperaturebelow dew point

48/ GE Jenbacher / Thomas ElsenbruchAugust 13, 2010

Sulfur/ash-deposits in an exhaust gas heat exchanger:

Solution: special biogas heat exchanger

- Cooling down to 180**°**C or 220**°**^C
- Exhaust gas heat exchanger without pipes at the bottom \rightarrow no condensate around the pipes condensate around the pipes
- Big condensate trap (DN50) + falling condensate pipes

International references

Biogas plant Kogel, Germany

No. of units and engine type: 1 x JMC 420 GS-B.L Fuel:Electrical output: 751 kWThermal output:Commissioning:

 Biogas (potato peelings/pig manure) 1,413 kW Steam production: 3 bar(g) 1,037 kg or 698 kW steam production Year 2002

Biogas plant Præstø, Denmark

No. of units and engine type: 1 x JMS 312 GS-B.L Fuel:Electrical output: 726 kWThermal output: June 2002Commissioning:

 Biogas from pig manure625 kW

Biogas plant DeQingYuan, China

No. of units and engine type: 2 x JMS 320 GS-B.L Fuel:Electrical output: 1234 kWThermal output: Sept 2008Commissioning:

 Biogas from Chicken Dung2126 kW

Cow manure "methane-to-energy" plant in Ludhiana - India

Biomass Input: 235 ton/day cattle manureElectrical output: 1 MWOrganic fertilizer: 35 ton/day

No. of units and engine type: 1 x JMC 320 GS-B.L

AD of biomass – Natural palm Oil - Thailand

Biomass:

- POME - palm oil mill effluent
. Basic conditions:

- -12m3/h POME
- Tamnaratura - Temperature of POME fresh from mill 80°C -> cooling-down in open lagoon

1 x JGS 320 GS-B.L.C

Power output:1064 kWel.Commissioning:2005

AD of biomass – Natural palm Oil - Thailand

August 13, 2010

AD of biomass – Kanoria I + II - India:

Biomass:

 Spent wash – 675 m3/d -> effluent removed after fermenting sugar cane molasses (ethanol production)

1 x JMS 320 GS-B.L

1 x JMS 420 GS-N/B.L

Power output:1034 kWel. / 1416 kWel.Thermal output: Water:586 kWth. / 748 kWth.Steam: ~ 1350 kg/h; 10barCommissioning: 1998 / 2003

Biogas plant Highmark, Canada

 $1 \times$ JMC 320 GS-B/N.LC Biogas from cow manure1,060 kW

Thank you for your attention!

Further Questions?

