# GE Energy Jenbacher gas engines

FECC - GTZ Training for Biogas Design Institutes - Beijing

From Biogas to electricity-CHP-use in operation

Thomas Elsenbruch







## **GE Energy Infrastructure**

Employees: 65,000 • '08 revenue: \$38.6B • Operating in 140 countries

#### **Power & Water**



- Power generation
- Renewables
- Gas Engines
- Nuclear
- Gasification
- Water treatment
- Process chemicals

### **Energy Services**



- Contractual agreements
- Smart Grid
- Field services
- Parts & repairs
- Optimization technologies
- Plant management



- Drilling & completion
- Subsea, offshore & onshore
- LNG & Pipelines
- Pipeline integrity
- Refining
- Processing



## GE's Jenbacher gas engines

A leading manufacturer of gas fueled reciprocating engines for power generation



**9,100+ delivered engines / 10,800+ MW worldwide**Power range from 0.25 MW to 4 MW

#### **Fuel flexibility**

Natural gas, biogas, flare gas, landfill gas, steel gas, coal mine gas

#### **Advanced system solutions**

Generator sets, container modules cogeneration, trigeneration, CO<sub>2</sub>-fertilization

#### **Environmental benefits**

Low emissions ecomagination solutions

**Lifetime services plus** (parts, repair, CSA, upgrades) 2,000 units under CSA







## Product Program 2010: Biogas, Sewage Gas and Landfill Gas





## The whole Jenbacher biogas fleet:

- Sewage gas: more than 450 installed engines (313 MW)
- •Biogas: more than 1500 installed engines (1065 MW)
- •Landfill gas: more than 1400 installed engines (1370MW)





# Jenbacher - Biogas engines in some EU and Asian countries

Installed in Biogas plants up to 31.12.2009:

| • | Germany     | 945 engines | 527 MW |
|---|-------------|-------------|--------|
| • | Italy       | 161 engines | 130 MW |
| • | Austria     | 90 engines  | 48 MW  |
| • | Netherlands | 69 engines  | 72 MW  |
| • | Denmark     | 46 engines  | 35 MW  |
| • | Czech Rep.  | 40 engines  | 28 MW  |
| • | Belgium     | 32 engines  | 36 MW  |
| • | Spain       | 32 engines  | 30 MW  |
| • | UK          | 11 engines  | 12 MW  |
| • | Poland      | 8 engines   | 6 MW   |
| • | Hungary     | 7 engines   | 3 MW   |
| • | Slovakia    | 6 engines   | 6 MW   |
| • | Thailand    | 42 engines  | 51 MW  |
| • | India       | 37 engines  | 32 MW  |
| • | Indonesia   | 28 engines  | 30 MW  |
| • | China       | 10 engines  | 12 MW  |



## Gas engines play core role in biogas plants



biogas-cogeneration units are core part of biogas plant, in combination with enhanced digester-technology



## Targets of development optim. Biogas engine



#### Target:

Optimized efficiency in operation with Biogas

Basic engines
Optimized specific output

#### Frame conditions:

- Biogas
- Exhaust emissions
- Thermodynamic Optimum



## Internal efficiency – combustion duration



Higher compression-ratio helps the efficiency



## Comparison of efficiency of different concepts



The optimum of compression ratio and BMEP must be found



# GEJ spark plugs/ ignition system development





## WWTP Straß/A JMS 208 GS.B.LC



WWTP Strass Zillertal/A
1 x JMS 208 GS B.LC

Electrical ouput 330 kW Thermal output 420 kW

Electr. efficiency  $\eta_{el} = 39\%$ Therm. efficiency  $\eta_{th} = 48\%$ 



## Optimization of combustion Type 2/3/4

### **Optimized Combustion**

Acceleration by "heart-shaped" piston bowl

Minimized crevice volume

- 30% lower HC
- 30% lower CO

increased compression ratio in combination mit "Miller"-timing







## **Efficiency increase in Biogas**



## Important criteria for gas engine selection



## Lean-burn combustion with gas engines



- •Lean combustion to ensure low NOx emission limits (500 mg/Nm³ and lower)
- •Reduced combustion temperatures enable higher specific outputs and efficiency



## Details: "Gas engine concept"



#### **Advantages:**

- "Cross flow" cylinder head (external exhaust gas manifolds)
- Clear separation of cold mixture inlet and hot exhaust gas
- Exactly defined thermal zones in the cylinder head
- Long cylinder head life time
- Better accessibility to the exhaust gas manifolds



### LEANOX® - Lean-burn combustion control



- •Sensors in non critical measurement ranges (pressure, temperature, deposits...)
- •Reliable and durable compliance with exhaust emission limit at changing operational conditions (fuel gas compositions...)
- Controlled combustion and subsequently controlled stress of various components (valves, cylinder heads, spark plugs...)

GE imagination at work





## Important criteria for gas engine selection

- Select a specifically designed biogas cogeneration unit
- Modern gas engine concept ("Cross-flow" cylinder head, no derived Diesel engine)
- Turbocharged engine for high power density and efficiency
- Electronic NOx-emission control, preferably with sensors outside the combustion chamber and exhaust gas manifolds
- Enhanced ignition control system (preferably with integrated electronic ignition voltage control)
- Knocking control (at least 1 sensor/ cylinder-line)
- Enhanced engine control system with alarm management (remote monitoring, diagnosis and control recommended)
- Interfaces between engine control and system control



## Typical operation and maintenance figures

#### Main maintenance intervals:

- Every 1,000 (2,000) ophs: spark plug and valve re-gapping, lube oil change (according oil analysis)
- Btw 5,000 and 10,000 ophs: overhaul of turbocharger, water pump...
- Minor or top-end overhaul btw. 15,000 and 30,000 ophs depending on manufacturer and engine condition (change of cylinder heads, pistons, liners, ...)
- Major overhaul: btw. 40,000 and 60,000 ophs depending on manufacturer: exchange of core-engine
- Specific maintenance cost:
  - 1.5 2 US¢/kWh for preventive and corrective maintenance
  - Major overhaul: Appr. 60% of the initial investment for the genset.

### O&M costs of genset appr. same as initial genset investment





- Achieved 8,740 out of 8,760 oph/y in 05
- 99.8% Availability with Biogas
- average 98+% fleet reliability at Biogas (450+ units)

## Heat recovery opportunities with gas engines



## Cogeneration of heat and power (CHP)

CHP systems utilize the waste heat incurred during engine operation to generate overall plant efficiencies of more than 90%.





## **Energy savings through CHP technology**



 $(1 - 2.5/4.33) \times 100 = 42\%$  savings of primary energy with cogeneration



savings:

roughly 40%

Thermal energy

## Temperature levels of different heat sources

|                            | Min.       | Max.        | Danger        |
|----------------------------|------------|-------------|---------------|
| <b>Engine Jacket water</b> | 57°C       | 95°C        | Overheating   |
| Lube oil                   | 70°C       | 90°C        | Viscosity     |
| Intercooler                | 55°C       | 80°C        | Condensation  |
| Exhaust gas                | (50°C)     | 220 (180)°C | Acid dewpoint |
|                            | Condensate | ė!          |               |



## Recoverable Heat w/ Integration 70/90°C

Hot water circuit J 312 GS-C225





Low temperature circuit (calculated with Glykol 37%)





# Heat utiliziation in Biogas-CHP JMS 312 GS-B.L (C225)



Therm. Efficiency: 40,3%



## Steam production with Gas engines

Foto: Biogas Kogel – 1 x JMC 420 GS-B.LC



**JMS 312 GS-B.L** 

Electr. Output: 526 kW

Therm. Output

Hot wat. 65/85°C: 325 kW Sat. steam, 8 bar: 345 kg/h

(= 231 kW)

LT-IC heat: 19 kW

Therm. eficciency: 42,7%

Feed water must be conditioned!



# Advantages of trigeneration systems over conventional refrigeration technology

- Operated with heat, utilizing inexpensive "excess energy"
- No moving parts in absorption chillers, no wear and therefore low maintenance expenses
- Noiseless operation of the absorption system
- Low operating costs and life-cycle costs
- Water as refrigerant, no use of harmful substances for the atmosphere





## Trigeneration with gas engines



Electr. Output: 526 kW Recoverable Heat: 550 kW

LT-IC heat: 40 kW

Cold production: ~385 kW

Therm. efficiency: 42,2%



## **Drying process with Gas engines**



**JMS 312 GS-B.L** 

Electr. Output: 526 kW
Recoverable heat: 653 kW
LT-IC heat: 24 kW

Therm. efficiency: 50,2%



## Brickyard LUNDGAARD Stoholm - Denmark

#### 1 x JMS 212 GS-N.LC



Electr. Output: 465 kW
Recoverable heat: 699 kW
Therm. efficiency: 59,0 %





## What is the right path with biogas?

### Biogas utilisation – An effective biofuel

Fuel equivalent (Liters/ha)





## What is the right path with biogas?

#### Biogas utilisation – GHG-savings

Data Source: Optimierungen für einen nachhaltigen Ausbau der Biogaserzeugung und -nutzung in Deutschland (ifeu et al. 2008)





## Summary - Biogas in CHP

- Biogas plants are operated weather independent for base load supply
- Biogas plants can be seen as state-of-the-art technology
- Because of low energetic density of source materials,
   biogas should be used decentralized
- Using biogas in CHP-modules generates highest
   GHG-savings



# Important design criteria



### **Gas Requirements:**

- gas pressure
- methane number
- •gas temperature/relative Humidity
- heating value fluctuation
- contaminations
  - Sulphur,
  - Halogens,
  - Ammonia,
  - Silica.....

In general these are important criteria for Non Natural gases



# **Gas - plant:**





### **Gas Requirements:**

- Gas temperature < 40°C
  - w mixture temperature
  - Imited by rubber materials of gas train \*\*
- relative humidity < 80%</li>(at every gas temperature)
  - ♦ condensate in gas supply
    - -filter; pressure regulator; gas train,.....
    - -condensate in engine/intercooler 🗱



### **Relative humidity:**





# Gas humidity / cooling:





# Gas Requirements TI 1000 - 0300:





# **Reduce humidity:**

Gas pipe + pre heating → second best solution



- Only reduction of rel humidity; works only at a low gas temperature level
- Water content is not changed
- Avoid condensate drain off in subsequent parts
- Gas cooling because of gas pipe mounted in soil possible but not sure

#### Active humidity reduction → best solution



- Effective reduction of water content
- Reduce risk of having condensate in the gas system
- Reduce risk of corrosion!

# Active gas drying / biogas example:



**Schmack 1/Deutschland** 

1 x JMS 312 GS-B.L

500 KWel

Gas cooling / drying / dehumidification

Electr. chiller



# Layout example:





#### Gas Requirements TI 1000 - 0300

#### Sulfur:

 $H_2S$  < 700 mg/10 kWh (without catalyst)

< 200 mg/10 kWh (with catalyst)

Standard maintenance schedule

 $\Sigma$  H<sub>2</sub>S < 1200 mg/10 kWh  $\Longrightarrow$  "modified" maintenance schedule

split acidification of oil

reduced Oil lubricity

\$  $SO_x + H_2O \rightarrow corrosion$ 

below dew point



# Gas Requirements TI 1000 - 0300



Sewage Treatment Plant
Sulfate deposits
exhaust gas temperature

exhaust gas temperature below dew point





Sulfur/ash-deposits in an exhaust gas heat exchanger:





### Solution: special biogas heat exchanger



- Cooling down to 180°C or 220°C
- ullet Exhaust gas heat exchanger without pipes at the bottom ullet no condensate around the pipes
- Big condensate trap (DN50) + falling condensate pipes





# International references



### Biogas plant Kogel, Germany



No. of units and engine type: 1 x JMC 420 GS-B.L

Fuel: Biogas (potato peelings/pig manure)

Electrical output: 1,413 kW
Thermal output: 751 kW

Steam production: 3 bar(g) 1,037 kg or 698 kW steam production

Commissioning: Year 2002



# Biogas plant Præstø, Denmark





No. of units and engine type: 1 x JMS 312 GS-B.L

Fuel: Biogas from pig manure

Electrical output: 625 kW
Thermal output: 726 kW

Commissioning: June 2002



# Biogas plant DeQingYuan, China





No. of units and engine type: 2 x JMS 320 GS-B.L

Fuel: Biogas from Chicken Dung

Electrical output: 2126 kW
Thermal output: 1234 kW
Commissioning: Sept 2008



# Cow manure "methane-to-energy" plant in Ludhiana - India





Biomass Input: 235 ton/day cattle manure

Electrical output: 1 MW

Organic fertilizer: 35 ton/day

No. of units and engine type: 1 x JMC 320 GS-B.L



# AD of biomass - Natural palm Oil - Thailand

#### **Biomass:**

- POME - palm oil mill effluent

#### **Basic conditions:**

- 12m3/h POME
- Temperature of POME fresh from mill 80°C -> cooling-down in open lagoon





1 x JGS 320 GS-B.L.C

Power output: 1064 kWel. Commissioning: 2005

> 57/ GE Jenbacher / Thomas Elsenbruch August 13, 2010

# AD of biomass - Natural palm Oil - Thailand

Biogas:

H2S content up to 2000ppm

-> desulphurization is a must!

-> done with a "BioGasclean-System"

Heat demand of the "Palm Oil Plant":

-> steam 22.5 to/hr (3.5bar;

0.5to/FFB)

#### Steam production:

- -> with "Palm Fiber"
- -> in addition with exhaust gas



GE Jenbacher / Thomas Elsenbruch August 13, 2010

👈 biogas

#### AD of biomass - Kanoria I + II - India:

#### **Biomass:**

 Spent wash – 675 m3/d
 -> effluent removed after fermenting sugar cane molasses (ethanol production)



1 x JMS 320 GS-B.L

1 x JMS 420 GS-N/B.L

Power output: 1034 kWel. / 1416 kWel. Thermal output: Water:586 kWth. / 748 kWth. Steam: ~ 1350 kg/h; 10bar Commissioning: 1998 / 2003

# Biogas plant Highmark, Canada



No. of units and engine type: 1 x JMC 320 GS-B/N.LC

Fuel: Biogas from cow manure

Electrical output: 1,060 kW
Thermal output: 1,240 kW
Commissioning: March 2004



# Thank you for your attention!



**Further Questions?** 

