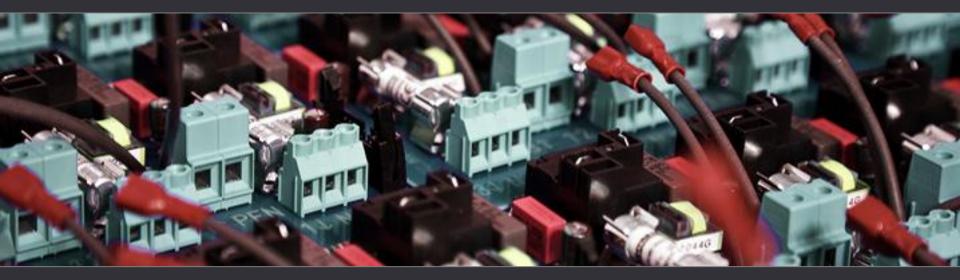

20 CHALLENGES AND SUCCESSFUL MODELS OF PRIVATE SECTOR MICRO-UTILITIES

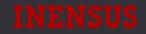
CHALLENGES AND SUCCESSFUL MODELS OF PRIVATE SECTOR MICRO-UTILITIES

--- DIPL.-ING. NICO PETERSCHMIDT MANAGING DIRECTOR INENSUS GMB



AGENDA

- **01** Best practice Micro-Utility business models
- **02** Overcoming classic Micro-Utility challenges
- **03** Overcoming the financing gap
- **04** Technology application strategies


---- DIPL.-ING. NICO PETERSCHMIDT MANAGING DIRECTOR INENSUS GMEH

DEFINITION OF MICRO-UTILITIES

Micro-Utilities:

- are often SMEs with limited financial resources
- _ Have besides financial interest intrinsic motivation to electrify rural areas
- Need innovative approaches to be successful
- _ Typically supply electricity to less than 5000 customers and generate revenues of below 1 M€ per system

BEST PRACTICE MICRO-UTILITY BUSINESS MODELS

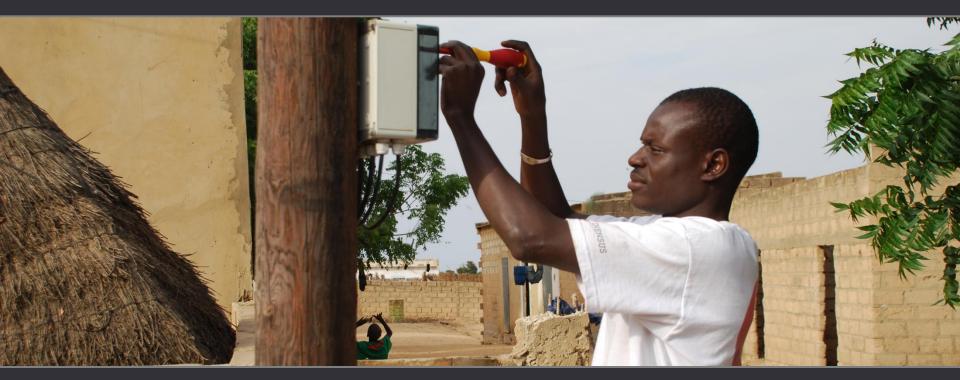
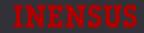
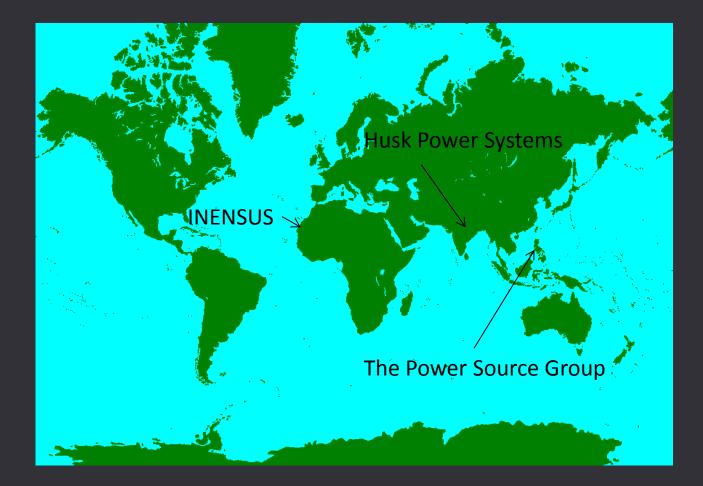
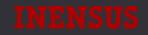




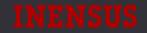
Foto: A Micro-Utility connects new customers

WORLD MAP OF BEST PRACTICE MICRO-UTILITIES PRESENTED HERE



----- DIPL.-ING. NICO PETERSCHMIDT MANAGING DIRECTOR INENSUS GMBH

THE POWER SOURCE GROUP - HUSK POWER SYSTEMS - INENSUS



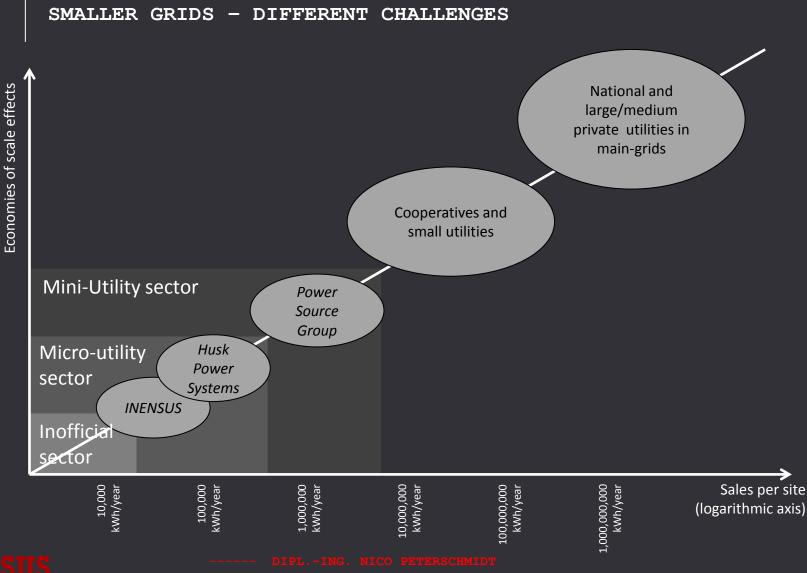
----- DIFL.-ING. NICO PETERSCHMIDT MANAGING DIRECTOR INENSUS GMBH

BEST PRACTICE MODELS AND THEIR CHARACTERISTIC MARKETS

	The Power Source Group	Husk Power Systems	INENSUS
_Country of first appl.	The Philippines	India	Senegal
_Regulatory framework	Regulated environment with subsidies	Electrification outside of national regulation	Concession, regulated tariff
_Availability of subsidies	Subsidy per kWh supplied to end customer	Investment subsidy	<pre>Intern. invest. subs./ local scheme in prep.</pre>
_Lives touched	Approx. 30,000	Approx. 200,000	Approx. 6,000
_LCOE	<pre>0.26 €/kWh to 0.4 €/kWh to be decreased by subsidies</pre>	0.1 €/kWh to >2.0 €/kWh depending on user behaviour	From 0.6 to 1.2 €/kWh depending on transaction costs

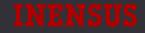
BEST PRACTICE MODELS AND THEIR CHARACTERISTIC MARKETS

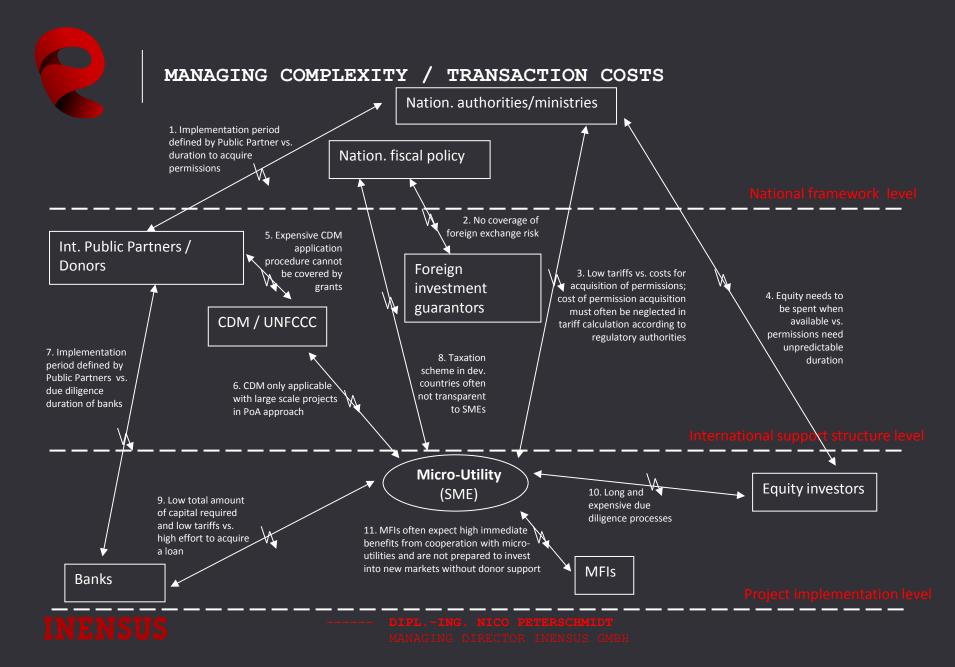
	The Power Source Group	Husk Power Systems	INENSUS
_Targeted system sizes	<pre>>1,000,000 kWh per year; >0.5 MW installed capacity</pre>	>30,000 kWh per year; >30 kW installed capacity	20,000 to 500,000 kWh per year; >20 kW installed capacity
_Energy sources:	Diesel with renewable off- set (solar PV, biomass gasification)	100% biomass (preferably rice husk) gasification	80% wind-solar, 20% diesel, battery storage
_Availability of supply:	24 h per day, well trained local staff	6 - 12 h per day depending on franchisee	24 h per day, fully automatic operation


OVERCOMING CLASSIC MICRO UTILITY CHALLENGES

10/20

MANAGING DIRECTOR INENSUS GMB

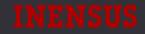

CHALLENGES AND SUCCESSFUL MODELS OF PRIVATE SECTOR MICRO-UTILITIES



SMALLER GRIDS - DIFFERENT CHALLENGES

Decreased economies of scale effects means increased challenges in:

- 1. Technical system stability due to higher concurrency
- 2. Prevention of conflicts arising due to intransparent community decision making structures
- 3. Revenue stabilization due to less divers income sources of customers
- 4. Increasing operation and transaction costs per kWh produced require new management approaches


THE TRANSACTION COST LEVER

High transaction cost lead to high electricity prices resulting in:

1. Electricity price elasticity challenge

2. Conflicts with Regulatory Authorities

3. Conflicts with willingness / ability to pay

STRATEGIES TO OVERCOME CLASSIC MICRO-UTILITY CHALLENGES

	The Power Source Group	Husk Power Systems	INENSUS
_Techn. system stabilization	Flexible diesel genset capacity available to cover any load	Limit total available power bandwidth to below power plant capacity	Primary control load management in meters, electr. block planning
_Reduction of community conflicts	CRM with local personell on site (applic. only in large grids)	<pre>Franchise model: Local operation; Maintenance by prof. company</pre>	<pre>Grid owner = public partner; Power station /movables owner = priv. company</pre>
_Income stabilization	Community Energizer Platform for productive electr. use	Production of incense sticks from ash, husk purchased from local sources	Cooperation with MFI prov. loans for productive use of electricity
_Transaction cost per kWh reduction	Selection of large villages to reach scale	Working outside of regulatory framework	Lean quality management procedures

OVERCOMING THE FINANCING GAP

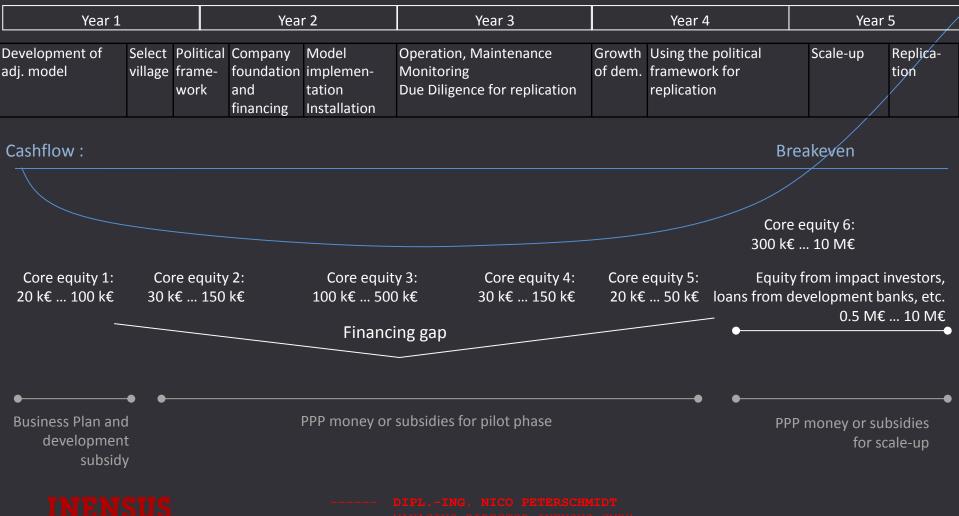
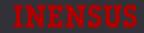
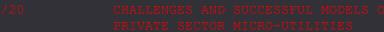
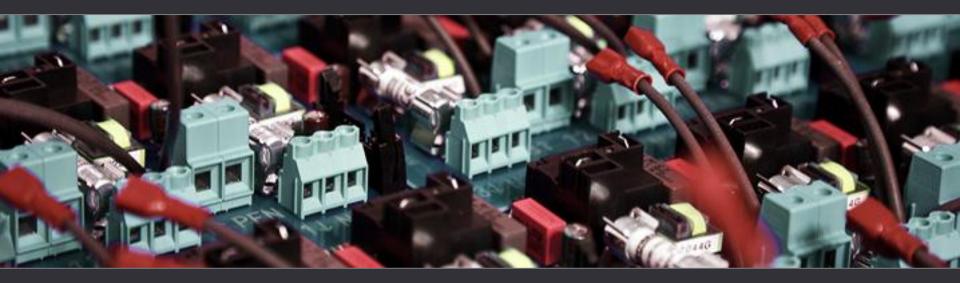
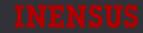


Foto: Happy electricity customers of a Micro-Utility


FINANCING ALONG THE MICRO-UTILITY DEVELOPMENT TIMELINE



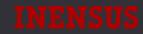

STRATEGIES TO OVERCOME THE FINANCING GAP


	The Power Source Group	Husk Power Systems	INENSUS
_Model/techn. development and pilot phase	Equity from company founders (from USA)	Winning business plan awards in the US	Equity from core business leveaged by subsidies from German institutions
_Capital for initial scaling to profitability	Impact investors	Impact investors + grants	Development bank + local equity in kind + grant
_Capital for large scale replication	Local equity investors + banks	Franchisees + local banks + grants	

TECHNOLOGY APPLICATION STRATEGY

APPLICATION OF TECHNOLOGY

	The Power Source Group	Husk Power Systems	INENSUS
_Electricity production	Production plants from proven international manufacturers	Low cost gasification equipment from own R&D and manufacturing	<pre>Int. brands of solar, wind and battery products, local constr. works</pre>
_Electricity distribution	Medium and low voltage distribution system meeting international standards	Sub-standard low voltage least cost distribution with bamboo poles and thin lines	Standard low voltage distribution system to be connected to national grid once available
_Metering/ billing:	Invoicing according to readings from electro- mechanic meters	Own prepaid load limiter, power capacity is sold not kWh	Own prepaid meter with load- and demand- management function


THANK YOU

Presenter: Nico Peterschmidt

INENSUS GmbH Am Stollen 19D 38640 Goslar

Germany

www.inensus.com Tel +49 (5321) 38271 0 Fax +49 (5321) 38271 99