

International Scientific Conference

Micro Perspectives for Decentralized Energy Supply April 23 – April 25, 2015 Bangalore, India

Techno-Economic Feasibility of PV Irrigation in Egypt

Prepared by:
Hany Abd ElAziz Mahmoud AbdElRehim

Agriculture in Egypt

Highest employment rate; 55% indirectly & 30% directly, 17% of the GDP & 20% of all foreign exchange earnings. [1]

- Takes place in 2 lands :
- "Old lands" (65%) [2]: Nile Delta & Valley with plot sizes from 1 to 3 acres.
- 2. "New Lands": plot sizes from 2 to thousands of acres. [3]
- 99% of the population residing to only 4% of the total land mass.[2][4]
- 1 m sea level rise; flood 34% of the Delta; jeopardizing 12% of Egypt's agricultural land. [5]

Techno-economic feasibility of PV irrigation in Egypt

Water resources for irrigation

3

Powering irrigation

US department of trade reported the Egyptian water pump market among the largest in the world with the dominance of diesel powered pumps over grid electric and PV ones. [3]

• "Diesel pump domination over the electric grid seems unjustified!"

Delta is connected to the national grid and at the most subsidized electricity to agriculture at 31.7%;circa 0.015 US\$/Kwh. [6]

Diesel domination is attributed to [3]:
1- Unreliable grid with frequent cuts.
2- Old Lands are small plots with a low average power requirement not of interest to electrification authority.

Powering irrigation (Subsidies)

Dominance of diesel pumps over PV ones was justifiable.

- Farmers tend to purchase systems with higher recurrent costs rather high capital ones. [7]
- 71% of total subsidies is allocated to energy subsidy.
 [8]
- Diesel prices subsidized at 65% reaching 0.15 US\$/liter in early 2014. [9]

5

Source: Siemens, Making sense of it all Source: Global Petrol prices.com

CAMPUS EL GOUNA

Shift towards the PV driven pumping

PV learning curves are declining, fuel costs are ever increasing and diesel is among the highest CO_2 emitting fuels (1.050 kg of CO_2 /KWh). [12]

The government reclaimed More than 3 million acres and considering;

- underground water for irrigation. [3]
- Egypt's favorable solar conditions of 3900 sunshine hours and above 2600 KWh/m² in the south to power the irrigation. [4]

Common components of PV Pumping

Techno-economic feasibility of PV irrigation in Egypt

Power conditioning

8

• Controller: An Electronic device matches the PV power to the motor and controls the operation of the PV pump; start and stop.

Source: Lorentz

 Inverter: convert DC electricity to AC (Alternating Current) to run AC pumps sets,

Source: SMA.

Pump set (Motor & Pump)

Brushless DC Motors	AC Motors
More efficient, low maintenance	Cheaper but require relatively expensive inverters
Less complex power conditioning	Large variety over larger loads

Submersible Pump	Surface Pump	
High heads (compared to 6.5 m limitation)	Cheaper	
No cavitation problems	Push water to longer distances	

Centrifugal Pump	Positive Displacement Pump	
Efficiency drop away from design speed	Efficiency drop at lower heads.	
Low starting torque	Higher depths of head	

Storage

Storage is not as severe in PV pumping as in other applications.

- Store water in gravity feed storage tanks and avoid higher investment and O&M costs of batteries. [14]
- Unlike the storage capacity of 2 to 5 days for a village water supply, a proportional relation between the crops evapotranspiration and the solar insolation. [14]
- 2 to 3 days of storage available at the root zone of the plant. [16]

Techno-economic feasibility of PV irrigation in Egypt

Distribution System

In the PV pumping context, **application efficiency** and the **application heads** are the factors determining the compatibility of the application.

Application	Efficiency (%)	Head (m)	Suitable (Yes/No)	Remarks
Channel	40-60	Very low	Sometimes	
Drip	90	Low	Yes	
Hose and Basin	90	Low	Yes	Labor intensive
Sprinkler	70	High	No	
Flood	40- 50	Very Low	No	

Source: An Introduction and Update on the Technology, Performance, Costs, and Economics. UNDP

Techno-economic feasibility of PV irrigation in Egypt

Model flowchart

site selection

Techno-economic feasibility of PV irrigation in Egypt

Base case results

Technical diesel pumping inputs	Value
η _P , Pump Efficiency (%)	0.6
L _F , Load Factor	0.7
$Specific_{fc}$, Specific diesel consumption (liter/KWh)	0.3

Technical PV pumping inputs	Value
Solar Insolation (KWh/m ²)	6.8
A_f , Area of Field (m ²)	6,000
Drip System (Drip/Channel)	Drip
Night Pumping Hours (hr)	0
Hours Of storage (hr)	1
Aquifer Depth (m)	60
η_{sub} , Subsystem Efficiency	0.6
η_{PV} , module, PV Module Efficiency at STC (%)	0.14

Economic inputs	Value
n, Project lifetime (years)	20
<i>i</i> , Interest rate (%)	10
r_n , escalation rate (%)	3

14

Cost Fractions

- PV pumping is capital intensive
- O&M is neglected

- Fuel costs should dominate the diesel pumping annuities cost fraction.
- low hydraulic load, subsidized diesel, O&M dominate (economies of scale).

Techno-economic feasibility of PV irrigation in Egypt

15

•

Sensitivity Total Dynamic Head (TDH)

Trend slope of the UWC of the PV pump shows faster increase

Techno-economic feasibility of PV irrigation in Egypt

Daily water requirement

Daily water requirement **1**, UWCs

- LCC divided Total are increased water production.
- In the PV system, increased daily water production means increased storage cost.

Techno-economic feasibility of PV irrigation in Egypt

17

period

Storage

storage hours **1**, UWCs **1**, payback period **1**.

• Simultaneous increase in tank capacity and the TDH as of the increased tank height.

PV unit Costs

. PV arrays are the most expensive component PV unit costs , UWCS , Payback period

Fuel costs

20

Fuel prices **1**, UWC **1**, Payback period

The fuel prices used are representative of the Egyptian diesel prices in comparison with the global average.

Solar insolation

Higher solar insolation translates economically into a smaller PV Pumping system.

Techno-economic feasibility of PV irrigation in Egypt

Existing diesel installation

Capital exhibits lowest cost fraction in diesel pumping

Project lifetime

As the project lifetime **1**, UWCs **1**

- Higher recurrent costs over a longer period of time with escalation rates.
- PV pumping annuities high upfront costs will be recovered over a longer period.

CO₂ Emissions

Daily hydraulic load , CO2 emissions linearly

Emissions reach 750 tons at a hydraulic load of 15,000 m⁴/day over the project lifetime.

Techno-economic feasibility of PV irrigation in Egypt

Finance

A loan capital would harmonize the high capital investment requirement to be more in pace with the negligible recurrent and high recovered capital costs of such long term PV pumping projects

Thank you

Questions?

References

[1] Boers, K. (2013). Raseed, Green energy in agriculture. Deutsche Gesellschaft für Internationale Zusammenarbeit GmbH.

[2] UNEP. (2010). "Africa Water Atlas". Division of Early Warning and Assessment (DEWA). United Nations Environment Programme (UNEP). Nairobi, Kenya.

[3] UNEP, I. (2003). BASELINE SURVEY OF THE RENEWABLE ENERGY SECTOR- EGYPT (pp. 8–14).

[4] Salim, M. G. (2012). Selection of groundwater sites in Egypt, using geographic information systems, for desalination by solar energy in order to reduce greenhouse gases. Journal of Advanced Research, 3(1), 11–19. doi:10.1016/j.jare.2011.02.008

[5] Olba, M. K., & Saab, N. W. (Eds.). (2009). Arab Environment : Climate Change Impact of Climate Change on Arab Countries (p. 38,39). Technical Publications and Environment & Development magazine. Retrieved from http://www.afedonline.org/afedreport09/Full English Report.pdf

[6] Egyptian Electricity Holding Company Annual Report. (2013).

[7] Fraenkel, P. L. (1986). Water lifting devices. FAO.

[8] Siemens. (2012). Energy Subsidies Making sense of it All.

[9] Castel, V. (2012). Subsidies, Reforming Energy (p. 2,3).

[10] ACCwam, G. I. Z. (2013). Drainage Water Reuse in Agriculture in Mahmoudia , Beheira Governorate (Egypt) A socio-economic assessment for the GIZ ACCWaM pilot project. Retrieved from www.accwam.org www.giz.de

References Continued

[11]globalpetrolprices.(2014).Retrieve from http://www.globalpetrolprices.com/diesel_prices/#Egypt [12] Saleem, D. (2012). Techno-economic Analysis of Using Solar Energy, Diesel and Electrical Networks for Water Pumping in The West Bank By Techno-economic Analysis of Using Solar Energy, Diesel and Electrical Networks for Water Pumping in The West Bank.

[13] Pullenkav, T. (2013). Potential for Solar PV Water Pumping for Irrigation in Bihar.

[14] Barlow, R., Mcnelis, B., & Derrick, A. (1993). Solar Pumping An Introduction and Update on the Technology , MN.

[15] These, D. (2013). Solar PV pumping systems, 1–4.

[16] Glasnovic, Z., & Margeta, J. (2007). A model for optimal sizing of photovoltaic irrigation water pumping systems, 81, 904–916. doi:10.1016/j.solener.2006.11.003

[17] Nations, U. (2008). World Population Prospects The 2008 Revision Highlights (Vol. 2008 Revis). Retrieved from http://www.un.org/esa/population/publications/wpp2008/wpp2008_highlights.pdf

Back up slides

Economic diesel pumping inputs	Value	Technical diesel pumping inputs	Value
Existing installation (Yes/No)	No	ຖຸ , Pump Efficiency (%)	0.6
Installation cost (%)	10	J.s. Load Factor	0.7
Generator quality (low/High)	High	Spacific Specific discol consumption	0.3
$E_{f,minor}$, Minor service frequency (frequency/Years)	4	(liter/KWh)	0.5
$E_{f,minor}$, Major service frequency (frequency/Years)	2	H_{DP} , daily pumping hours (hr)	8
$E_{f,overhaul}$, Overhaul frequency (hrs)	10,000		
$E_{f,Gen}$, Generator replacement (hrs)	35,000		
U_{diesel} , diesel unit costs (US\$/Liter)	0.25	Technical PV pumping inputs	Value
r_n^{fuel} , Fuel Escalation rate (%)	8	Solar Insolation (KWh/m ²)	6.8
Economic PV pumping inputs	Value	ET (varies/Constant)	Varies
n, Project lifetime (years)	20	T_a , Ambient Temperature (C°)	27
$E_{f,PVp}$, frequency of PV pump replacement	7	A_f , Area of Field (m ²)	6,000
(years)		Drip System (Drip/Channel)	Drip
U_{PV} , PV generator unit cost (US\$/ kW_P)	0.002	Night Pumping Hours (hr)	0
Installation costs (%)	10	Hours Of storage (hr)	1
U_{tank} , Water storage tank unit cost (US\$/m³)	200	$\left. h_{Tank} \right _{d'}$ Height to Diameter Ratio	1
$U_{shiping}$, Shipping unit Cost (US\$/kg)	1.82	(<i>Main line</i> _{FL}), Main Pipe length (m)	10
U _{unskilled} , Unskilled labor Cost (\$/hr)	7	$(U_{Pressure})$, Drip inlet pressure per area (psi/m ²)	0.001
Financial Inputs	Value	Aquifer Depth (m)	60
<i>i</i> , Interest rate (%)	10	ຖ _{<i>sub</i>} , Subsystem Efficiency	0.6
r_n , escalation rate (%)	3	SF, Safety Factor	1.2
<i>CI</i> ₂₀₁₄ , 2014 Cost Index	569.9	I_{max} , Irradiation at STC (kW/m ²)	1
<i>CI</i> ₂₀₁₀ , 2010 Cost Index	550.8	Π_{PV} , module, PV Module Efficiency at STC (%)	0.14

Series	Hydraulic Load (m ⁴ /hr)	Price (US\$)	Weight (Kg)
PS150	29	1,616	23
PS200	50	2,055.70	25
PS600	136	2,742.79	37
PS1200	207.5	2,742.79	38
PS1800	280	3,519.52	42
PS4000	720	5,747.01	49
PS9K2	1620	10,501.90	163
PS15k2	2730	12,979.00	197
PS21K2	3850	14,510.00	227
PS25K2	4620	16,000	233

