

Productive Use of Solar PV in Developing Countries

BSW Off-Grid Power Forum at Intersolar 2014

Munich, June 6th, 2014

Monika Rammelt

Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

What are Productive Uses of Energy (PUE)?

PUE are defined as agricultural, commercial and industrial activities involving electricity services as a direct input to the production of goods or provision of services.

- ⇒ Includes home businesses, non-monetary income
- ⇒ Excludes social infrastructure etc.

Productive use of energy can be a significant driver of economic growth and social progress in developing countries:

- underpin the creation and upgrading of value chains
- facilitate diversification of economic structures and livelihoods
- reduce vulnerability to multiple stresses and external shocks.

Productive applications of solar PV

Agricultural activities/ agro-processing

- Pumping systems
- Grain mills
- Lighting for poultry breeding, aeration for fish breeding
- Packaging

Service sector

- Refrigeration in bars, restaurants, shops
- Charging mobile phones and battery shops
- Hair dressers
- Secretarial services and internet cafes
- Tailoring

Packaging, Uganda

There is a **huge untapped potential** for **electricity from solar PV** in developing countries, that could be used **for productive purposes** (apart from merely lighting rural homes) to spur economic growth in rural areas.

Hair cutting, Uganda

Tailoring, Senegal

Grain milling, Senegal

Water pumping, India

Opportunities

- ⇒ Abundant energy resources
- Suppressed demand for goods and services that could easily be set free
- ⇒ Available technologies, machinery

Challenges

- ⇒ Need to further develop technologies based on performance in field
- Lack of sufficient data to precisely develop business cases
- ⇒ Lack of suitable financing structures
- ⇒ Need for strengthening of technical capacities in rural areas

PV Pumping Systems for Irrigation

- Economic and ecologic alternative to small to medium sized diesel pumps
- Water storage for cloudy days recommended

Solar Irrigation System in India, GIZ/ Pullenkav

Advantages

- Daily operation does not require specially-trained personnel
- Maintenance efforts and costs are low
- No fuel costs

Challenges

- High investment costs
- Lack of sufficient data on economic viability (compared to diesel/grid) and suitability for different field sizes, crop systems and water sources

DC Grain Mills

Challenges

- High start-up current required, need for a start-up resistor which is prone to breakage
- Load must be directly connected to the battery
 - Battery not protected against deep discharge
 - Recurring user training required
- Battery maintenance

DC grain mill in Senegal, GIZ/ Wegner

Impact

- Saving of transport costs to nearest grid-connected mill
- Ease workload on women (those in charge of milling by hand with the help of a mortar and pestle)

DC Grain Mills

Exemplary business scenarios

Product		Payback-Time (at full capacity)		
	System	Expenditure	Income	
BOSS Cereal Mill (Phaesun)	 1 kWp sola array Controller Batteries Cabling Mill 	r ~7000€	Purchase price: 0,40 €/kg maize sales price: 0,50 €/kg maize flour income = 0,10 €/kg daily process capacity: 180 kg = 18 €/day Income per month: 360€/month	20 months
Solar Milling	Stone Mill with 750 W electric modeSolar array	tor	income = 0,10 €/kg daily process capacity: 90 kg = 9 €/day Income per month: 180€/month	21 months

Solar Cooling

Provides for chilled food and bevarages as well as preservation of

agricultural products

- Two types of DC refrigeration systems
 - Including battery (significant cost factor)
 - Without battery ("direct-drive")
- Size of the fridge/ freezer:
 - according the type of business
 - typical unit sizes range from 50l to 240l
 (50 l → fridge can hold appr. 50 cans of 330 ml)

Cattle Farmer in Mali using solar PV for refrigeration of fresh milk, GIZ/ Doumbia

Solar Cooling

Exemplary business scenario: Kiosk – 50 I fridge/ freezer

Characteristics

	Туре	DC [V]	Power Required [W]	Average energy Use
501	Fridge	10 - 31	45	114 Wh/d @ 32 °C amb. temp.
	Freezer	10 - 31	90	280 Wh/d @ 32 °C amb. temp.

Panel Size

	Туре	Energy Required	Solar Irradiance	System Efficiency	Panel Size
50 I	Fridge	0,114 kWh/d	5 kWh/m²/d	59.5 %	38 Watt
	Freezer	0,280 kWh/d	5 kWh/m²/d	59.5 %	94 Watt

Exemplary business scenario, Phaesun 50 I fridge

Product	Application				
		System	Expenditure	Income	Time
Fridge, 50I (Phaesun)	•	2 panels batteries cabling fridge	2400€	Sale of 45 drinks per day with an extra price of 0,12 € because it is cold = 162 € extra revenue / month	15 month

Shop selling ice cream and other products in a Senegalese village, GIZ/ Kamikazz

Entrepreneur in Burundi using solar PV for cutting hair and charging cell phones and batteries. Upon installation of the solar system, he hired two employees, GIZ/ Heidtmann

Solar Battery Charging Station (SBCS)

- System: PV array, battery, charge controller
- Modes of operation :
 - a fee per charge
 - a monthly fee
 - renting a recharged battery owned by the operator

Solar powerered battery charging station in Mali, mainly used for charging mobile phones, GIZ/ Doumbia

Exemplary business scenario, SBCS Mali

Product		Application			
		System	Expenditure	Income	Time
SBCS	•	6 panels	7.900€	income = 0,8 €/battery	Nearly 14
	•	Charge controler		Daily charging capacity: 3	years
	•	Cables/ fitting		batteries = 2,4 €/day	
	•	building		Income per month: 48	
				€/month	

→ in addition to battery charging, SBCS may include additional services like solar and electric equipment and lantern/ mobile phone charging

Product		Payback- Time		
	System	Expenditure	Income	Tille
Solar Barber (fosera)	2x 120W PanelsControllerBatteriesMachineScissors	1000€	Price per cut: 1 € 10 cuts per day: 10€/ day Income per month: 200€/month	5 months
Solar Cinema (fosera)	 2x 120W Panels Controller Batteries TV and or 5V Phillips Projector 	1100€, Projector ~	entry fee per people: 0,20€ 1 session per day, 20 people: 4€/day Income per month: 80€/month	~14 months
Solar Charge Station (fosera)	 120W Panel Sundaya Charging Station (30 lamps) Sundaya WallDock (3 JouleSticks) 6 Sundaya Joule Sticks to charge cell phones 	380€	Charging fee per lamp: 0,15€ Charging fee per phone: 0,08€ Charging 12 lamps, 8 cell phones per day: 2,44€/day Income per month: 48,80€/month	~8 months

Success Factors of PUE

Active support is needed to ensure that providing access to electricity produces significant results.

Access to financing to purchase equipment

Access to technical and business know-how to utilise electricity

Access to **electricity** for productive use

Productive Uses of Energy

Further Information

- <u>http://www.giz.de/expertise/html/2769.html</u>
- www.produse.org

Thank you.

Monika Rammelt

Poverty-oriented basic energy services

Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

monika.rammelt@giz.de