

Biogas Potential in Thailand

Renewable Energy Biogas/Biomass Made in Germany Conrad Hotel, Bangkok 9 September 2009

Sirikul Prasitpianchai Project Manager German Technical Cooperation (GTZ)

Sources

- Industrial wastewater
 - Tapioca/Palm Oil/Ethanol
 - Food canning and process
 - Frozen Seafood
- Agriculture wastewater
 - Pig/Chicken/Duck/Cow

Municipal Solid Waste (MSW)

Industrial Wastewater

Data: 2008

Industry	Total factories	Biogas systems	No Biogas
1. Starch/Tapioca	86	60	26
2. Palm oil	49	22	27
3. Ethanol	24	11	13
4. Rubber	88	4	84
5. Food processing	66	26	50

Industry - Starch/Tapioca

- Starch/tapioca industry has high biogas technology penetration, nearly 70%.
- Remaining potential is in smaller factories (production capacity 100-200 Ton/day)
- Potential in tapioca wet cake

Industry – Palm Oil

- 40% of Palm oil industry has biogas plants
- Potential of EFB for biogas is being studied in GTZ Sustainable Palm Oil Project (Contact: Daniel.May@gtz.de)

Industry - Ethanol

- Existing biogas systems are nearly 50% of total potential
- Ethanol can be produced from cane molasses/cassava

Industry – Food&Beverage Industry

- 66 factories are identified as good potential for biogas production (gas volume > 400 m³)
- Majority of potential factories are in food canning and frozen seafood

Industry - Rubber

- Technical barrier
- Need research cooperation
- May need enforcement of environmental regulations on wastewater

- Pig farm is most developed in biogas installation with 20% of potential.
- With government subsidy target, pig farms will reach 40% of potential in 2013
- Other farms still behind in biogas development due to technical, financial barriers, collection of sources, and competing use in other sectors

MSW and Domestic Wastewater

Source: Pollution Control Department, 2004

Investment Cost

Waste sources	Baht/m3 biogas	Baht/kWh
Dried fruit	0.33	0.28
Таріоса	0.77	0.64
Palm Oil	0.84	0.70
Pig farm	0.96	0.80
Starch	1.37	1.14
Slaughter (pig)	2.65	2.21
Paper	3.11	2.60
Alcoholic beverage	3.52	2.93
Beer	5.12	4.26
Solid Waste	5.44	4.53
Non-alcoholic beverage	7.19	5.99

Cost of biogas systems depends on several factors. The above table shown average investment cost regardless of technology from field survey, interview, and secondary data from 190 systems in Thailand.

- Only Initial Investment Cost
- System life time 15 years
- Overall biogas production

Source: A Study on Biogas Potential, KMUTT, 2006

Problems/barriers in Thai Biogas sector

- Human resource: under qualified operators leads to inefficient operation of systems/shut down
- Lack of mutual agreement on standards
- Lack of network for cooperation among several stakeholders

GTZ Biogas Project

- Identify incentives/measures for impenetrate sub-sectors
- Quality system for operator/planner and human resource development
- Biogas network/association
- **Project period**: 2 years (October 2009 September 2011)

Biogas Network

Biogas Producers

- Exchange of experiences
- Leverage framework conditions

Research/Academic

- Exchange of information and compilation of database
- Cooperation on research and testing

Policy Makers

- Agreement on standards and regulations
 - DIW, Ministry of Industry (safety standards)

PCD, Ministry of Natural Resources and Environment (environmental standards),

- DEDE, Ministry of Energy (quality/performance standards)
- Cooperation on database of biogas systems

Private Companies

- Contact point for products information
- Access to market

Energy Research Institute (ERI)

Chulalongkorn University Tel: 02 218 8096-8 Website: <u>www.thaibiogas.com</u>, <u>www.eri.chula.ac.th</u>

 Waste Utilization and Management Pilot Plant Development and Training Institute (PDTI) King Mongkut's University of Technology Thonburi (KMUTT) Tel: 02 452 3456 Website: <u>www.pdti.kmutt.ac.th</u>

Energy Research and Development Institute (ERDI)

Chiang Mai University Tel: 053 942 007 Website: <u>www.erdi.or.th</u>

Email: <u>Sirikul.Prasitpianchai@gtz.de</u> Tel: 02 298 2593 Website: www.gtz.de/thailand

