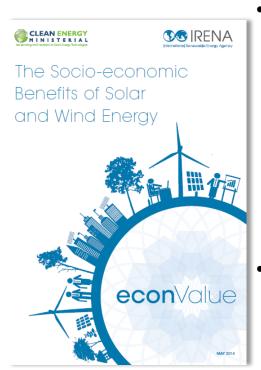
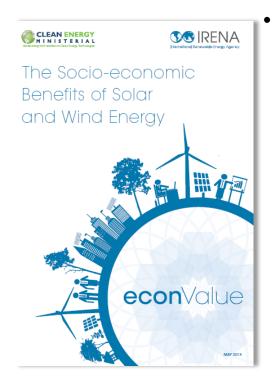
Selection criteria and examples of tool application

Alvaro Lopez-Peña, Policy Unit, IRENA

Workshop on the socio-economic Benefits of Renewable Energy in MENA World Future Energy Summit 2015 19th of January 2015

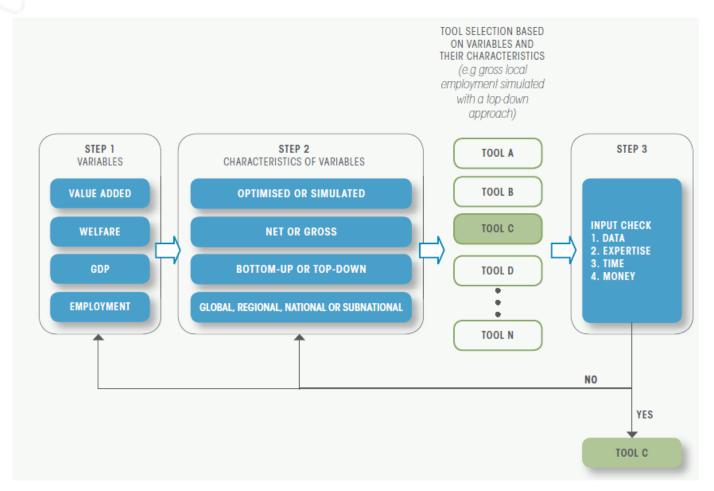


Key messages from the chapter on tools in IRENA's econValue report (1 of 2)



- Sound quantitative analysis of the expected socioeconomic effects of renewable energy deployment is essential to enable informed policy choices.
 - Helps to monitor policy effectiveness (e.g. job creation)
 - Communicate benefits to the society with reliable figures
 - Key to ensure economic sustainability and stability of policies in the medium-term
- Albeit valuable, such analysis is a **complex endeavour**.
 - Can be intensive in time, human and financial resources
 - Important data gaps remain (renewable energy is a cross-cutting and relatively new sector)
- It is already been done in some countries (examples coming next)

Key messages from the chapter on tools in IRENA's econValue report (2 of 2)

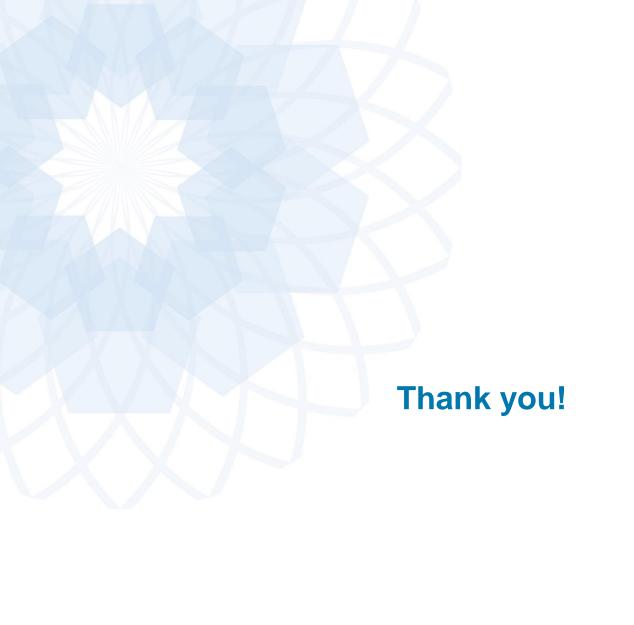


- Countries should enhance systematic data collection and handling.
 - It could be done:
 - Adding targeted questions to industry and statistical surveys
 - Or developing case studies.
 - The data should:
 - Be well defined and collected over a long time series
 - Comply with international reporting standards to ensure comparability among countries
 - Ideally, a solid input output framework with significant disaggregation of energy industries.

How to select a tool? Proposal from econValue

Source: IRENA & Clean Energy Ministerial. (2014). The socio-economic benefits of large-scale solar and wind: an econValue report.

Some existing examples (1 of 2)


- Using employment factors:
 - Global:
 - IRENA global job estimations REmap 2030:16 M jobs in RE sector in 2030
 - Rutovitz and Harris estimations for Greenpeace Energy [R]evolution: 12 M jobs in RE sector in 2030
 - Regional:
 - IRENA job estimations GCC: 116,000 jobs in RE per year on average in RE
 - Potential for renewable energy jobs in the Middle East (van der Zwaan et al., 2013)
 - ECOWAS (Evan Mills, 2014 for UNEP and BMZ): up to 500,000 jobs by efficient off-grid lighing
 - National:
 - Brazil (Simas and Pacca, 2014), South Africa (Rutovitz *et al.*, 2010), United States (Wei *et al.*, 2010), Saudi Arabia (KACARE)

Some existing examples (2 of 2)

- Using Input/Output:
 - National
 - Tunisia (Lehr et al., 2012)
 - Spain (APPA, Deloitte, CIEMAT, Abay Analistas)
 - Mexico (PwC):
 - United States (NREL's JEDI model)
- Using full economic models:
 - Regional
 - European Comission (both general equilibrium and econometric approaches)
 - National
 - Germany (Lehr et al., 2012, Böhringer et al., 2013, etc.)
 - Ireland (Cambridge Economentrics, 2013)
 - Poland (Bukowski et al., 2014)
 - South Korea (KEIS, 2012)

Increasing scope, sophistication, data requirements, cost

	GROSS IMPACT ASSESSMENTS		NET IMPACT ASSESSMENTS	
	EMPLOYMENT FACTORS	GROSS INPUT- OUTPUT AND SUPPLY CHAIN ANALYSIS	NET INPUT-OUTPUT	COMPREHENSIVE ECONOMIC MODELS*
Economic performance (e.g. GDP, value added, welfare)		X	X	X
Employment	X (only direct jobs)	X	X	X
Applicability	Quick assessments and simple monitoring of employment in the RE industry	More sophisticated monitoring of economic value creation in the RE industry	Rough economy- wide assessments for the short term	Short to long-term economy-wide assessments
Relative cost	\$	\$\$	\$\$\$	\$\$\$\$

Fuente: IRENA & Clean Energy Ministerial. (2014). The socio-economic benefits of large-scale solar and wind: an econValue report.

TABLE 3.7 METHODS CATEGORISED BY THEIR MODEL CHARACTERISTICS

		SECTORAL SCOPE					
		GROSS (ONLY ONE SECTOR) MATHEMATICAL TECHNIQUE		NET (ECONOMY) MATHEMATICAL TECHNIQUE			
		OPTIMISATION	SIMULATION	OPTIMISATION	SIMULATION		
Technological approach	Bottom-up		Employment Factors		Economic simulation (<i>e.g.</i> System Dynamics)		
			Supply Chain Analysis				
	Top-down		Gross Input-Output		Net input-output		
				Computable General Equilibrium			
					Economic simulation (<i>e.g.</i> System Dynamics)		
					Macroeconometric		