

Contents

1	Problems on the use of crop straw
2	Key technologies for effective biogasification of crop straw
3	Demonstration projects in China
4	Challenges

1. Problems with crop straw in China

Amounts and Problems

- 700 million tons of various crop straw are generated every year in China
- ~50% are used as feedstock, animal bedding, construction materials, soil amendments, etc...

The rest is burnt in open field

Utilization as bio-resources

As fuels:

Burn directly smoke...

Pyrolysis tar...

Gasification char...

As substrate:

- > Ethanol fermentation long way to go...
- Anaerobic digestion comparatively reliable!

—produce bioenergy & reduce the pollution from crop straw

Existing Problems

- Low biodegradability, low biogas yield, and long digestion time
 - ——due to high content of lignocellulose in crop straw
- **♦ Inconvenience in industrial applications**
 - ——due to special characteristics, such as intertwining, hard to load in and discharge, low bulking density, inflation in water, not uniform...

Potential Solutions

- **◆Pretreatment**
 - —to improve the biodegradability
- **♦Optimizing the digester**
 - ——to adapt to the special material properties, and meet the biological requirements
- **♦**Optimizing operational parameters
 - ——to determine optimal parameters to achieve the best performance

2. Key technologies for effective biogasification of crop straw

2.1 Pretreatment technologies

Why Pretreatment is needed?

Purpose of Pretreatment

——to improve the biodegradability through:

- (1) breaking the links between cellulose, hemicellulose and lignin, making more carbohydrate available
- (2) decomposing lignin, cellulose, and hemicellulose to obtain more readily biodegradable substances
- Physical methods: chopping, grinding, steam explosion, extrusion etc...
- Chemical methods: NaOH, KOH, NH₃, H₂SO₄, etc...
- Biological methods: ensilage white-rot fungi, retting etc...

40

30

Time/d

for rice straw:

10

20

no significant biogas production differences at different sizes 1.3mm(29.47L)>1cm(29.46L)>3cm(28.39L)>0.6mm(27.93L)

50

60

Loading rate: 50g/L

Solid-state NaOH Pretreatment

Patented

To break down the lignin structure Low moisture content (60%) Short retention time (2~3 d)

✓ Biogas yields were increased by 65%, 44%, 27% and 43%

Batch Digestion of Wheat Straw

✓ Biogas yields were increased by 28-50%

Batch Digestion of Corn Stalk

✓ Biogas yields were increased by 10%, 38%, 49% and 65%

White-rot fungi——Beijing University of Chemical Technology

Ensilage——Chinese Academy of Agriculture Engineering

 Soaking—Beijing University of Chemical Technology

Pretreatment time: 20, 35, 50 and 60d

Result: biogas yields increased by 40%-50%

2.2 Optimized technologies and digesters

Many kinds of anaerobic digesters have been developed in China to deal with crop straw

Completely Mixed Plug Flow Digester —BUCT

Patented

Parameters

TS in digester: 65kg/m³

HRT:45-50days

C/N ratio: 20-25

Temp.: 35℃

Mixing:2-3h/day

Biogas yield: 330-350 m³/tonTS

Two Phase Anaerobic Digester —CAAE Acidogenesis Methanogenesis **5**settle down ①stable → ②discharging 4 feeding and self-phasing ③inoculation

Batch Digester with mixing—BUCT

Patented

Batch Digester with mixing—BUCT

Batch Digester without mixing—Jiangsu

红泥塑料秸秆沼气工程工艺流程图

Hybrid Dry Digestion—CAAE

Hybrid Dry Digestion—CAAE

Aerobic process

Anaerobic process

Daxing district ,Beijing

3. Demonstration Projects

Financial Support from MOA China

Most of the demonstration projects are supported by the Ministry of Agriculture, China

- 5000 million RMB/year, including 1600 million RMB dedicated for large scale (300~500 families) biogas plants
- each plant can get ~1.5 million RMB from MOA
 - Year 2009 16 plants in 12 provinces
 - Year 2010—31 plants in 27 provinces
 - Year 2011—more...

Year 2009

Demonstration projects built by BUCT

Shandong

Upgraded biogas as vehicle fuels

Patented

4. Challenges

- Material price (up to 300-400RMB/ton)
- Technology issue
- Mechanical issue
- Quality of the construction
- Maintenance & management issue

