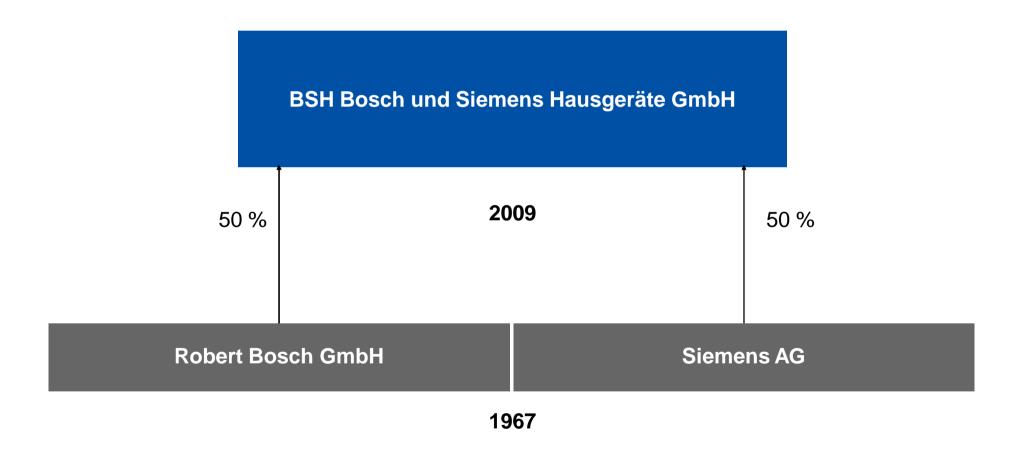


Cieutscher Frachhaltigkeitspreis Deutschlands nachhaltigstes Unternehmen 2008

Protos The Plant-Oil Cooker: An Appropriate Solution to Complex Challenges


Samuel Shiroff Bonn, January 11, 2011

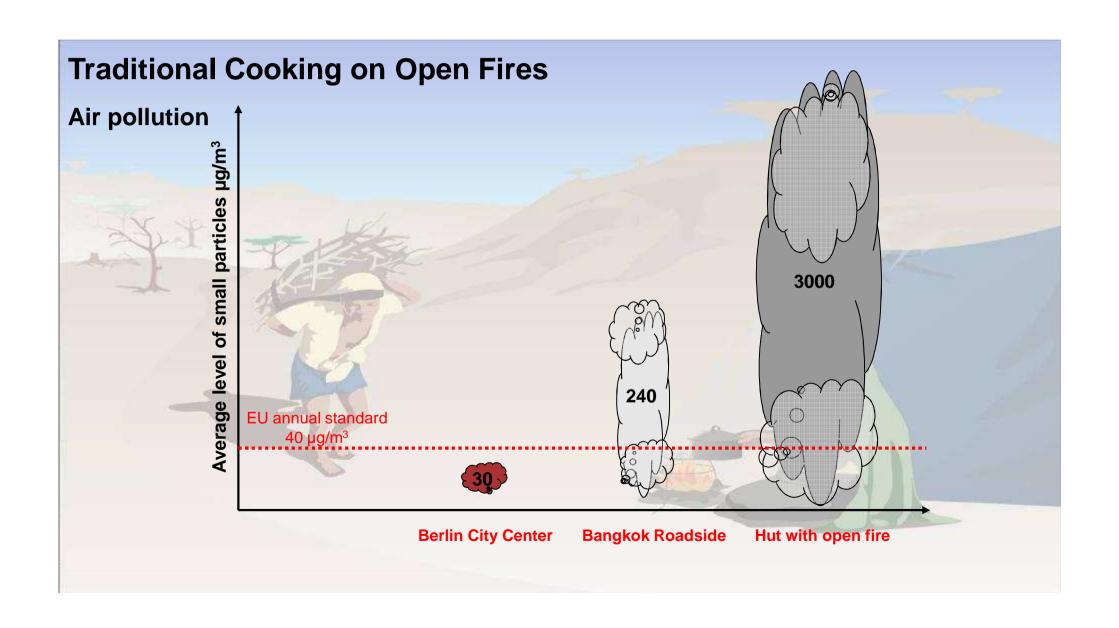
Agenda


- BSH Overview
- Protos: A more efficient way to cook
- Business Model and Economics
- Indonesia and Beyond

The BSH Shareholders

BSH - in a nutshell

- 12 brands*
- ~ 40,000 employees worldwide**
- 8.4 bill. EUR sales**
- > 60 companies in over 40 countries*
- 41 factories in Europe, the USA, Latin America and in Asia*
- Global sales and customer service network



Agenda

- BSH Overview
- Protos: A more efficient way to cook
- Business Model and Economics
- Indonesia and Beyond

Protos – The World's First Plant Oil Stove

•Facts and figures:

Power range: 2.0 - 2.5 kW

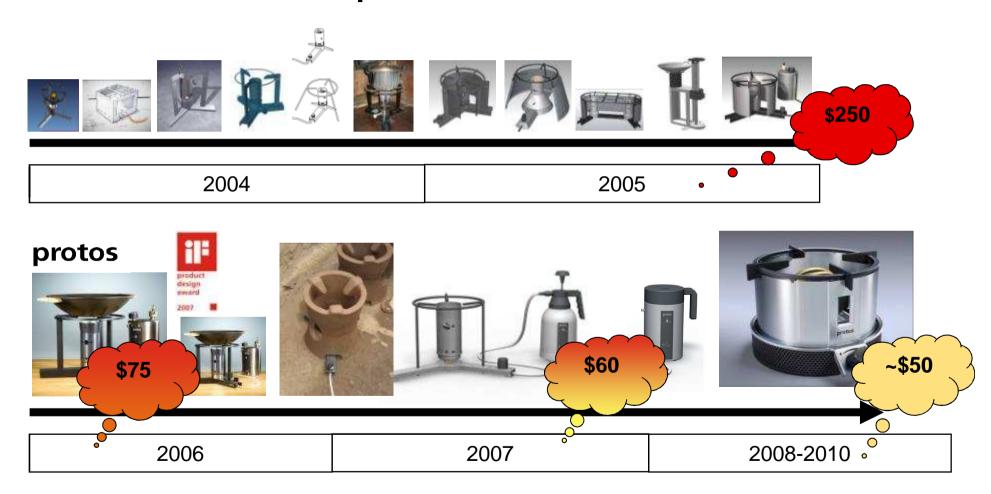
Usage: 2-4 liters oil per week for a family of 4-5

 \rightarrow 100 – 200 liters per year

Fuel: All plant oils, also used oils

Efficiency: 45 – 58 %

Emissions: Ten times lower than with kerosene


CO2-balance: Neutral

Reason for introduction of Protos:

- Powerful stove
- Usage of renewable energies
- Environmentally friendly
- Healthy for the user
- Local economic added value & job creation

Protos – Product Development

Protos I vs Protos II – A Significant Improvement

Facts and figures: Protos I

Power range: \odot 1.5 – 3.0 kW

3-6 liters oil per week

Usage: \bigcirc for a family of 4-5 \rightarrow

150 – 300 liters per year

Fuel: All plant oils also used oils

Emissions: Ten times lower than

with kerosene

CO2-balance: Neutral

Noise: 83 Decibels

Cost: >\$60

Cleaning sometimes impossible

Power range:

Usage:

Fuel:

Efficiency: Emissions:

CO2-balance

Noise

Cost:

Cleaning

Protos II

2.0 - 2.5 kW

2-4 liters oil per week

for a family of $4-5 \rightarrow$

100 – 200 liters per year

All plant oils

also used oils

45 – 58 %

Ten times lower than

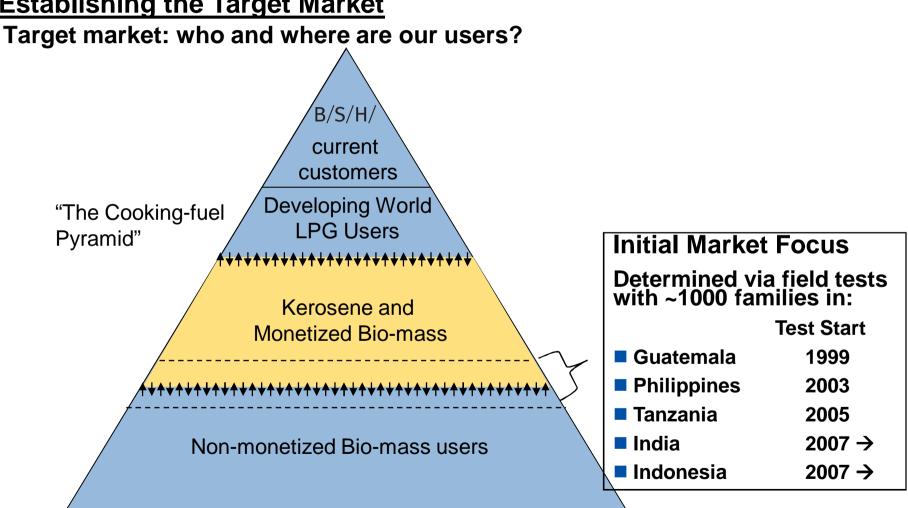
with kerosene

Neutral

63 Decibels

~\$50

sometimes difficult



Agenda

- BSH Overview
- Protos: A more efficient way to cook
- Business Model and Economics
- Indonesia and Beyond

Establishing the Target Market

On Target

Target Market will rarely be the Jatropha Farmers....

Jatropha Farmer

Oil Press & Filter

Press Cake

Cooking & Fertilizer with

Town & City Residents

Buying Jatropha Oil for Cooking Fuel

Press Cake

PROTOS: Ensuring a Sustainable Supply Chain

a sustainable system

stove

Raw Materials

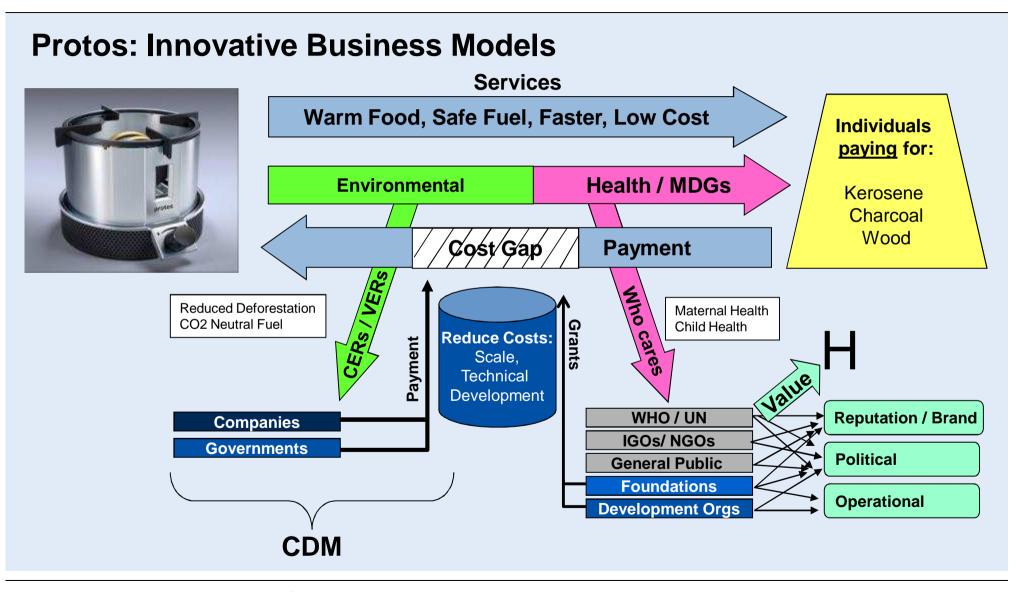
Adaptation & Production

Marketing Sales

Service

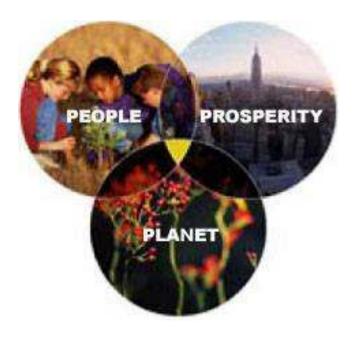
Business Model: Cost of the Cooker

■ Production Cost ~ \$50 (includes tank)


■ Sales Cost ~ \$20

■ Cost gap ~ \$30 per unit

Question: To whom does the cooker bring added value?


Three Possible Business Models

<u>Traditional</u>	Builder Model	CO2 Model	
 Cooker Price ~\$50 ExW Warranty Deducted Spare Parts Optional % of purchase 	<pre>Cooker Price ~\$50 ExW + Warranty 1-year ~\$?? + Service ~\$?? + Builder Subsidy - \$xx</pre>	■Cooker Price ~\$50 ExW+ ■Warranty 7-year ~\$?? + ■Service ~\$?? + ■CO2 Project Cost \$xx ■CO2 Revenue -\$yy	
■Total User Cost: \$55++++ Cooker + Transport + Training + Profit margin + Warranty	■Total User Cost: <55 Cooker + Transport + Training	■Total User Cost: <<55 Cooker + Transport + Training	
CustomersBusinesses in regions where user can pay	 Customers Government Plantations Charitable Organizations CSR 	CustomersCO2 Project DevelopersCSREnergy Companies	
	ove	rlaps	

Key Market Factor: Plant Oil

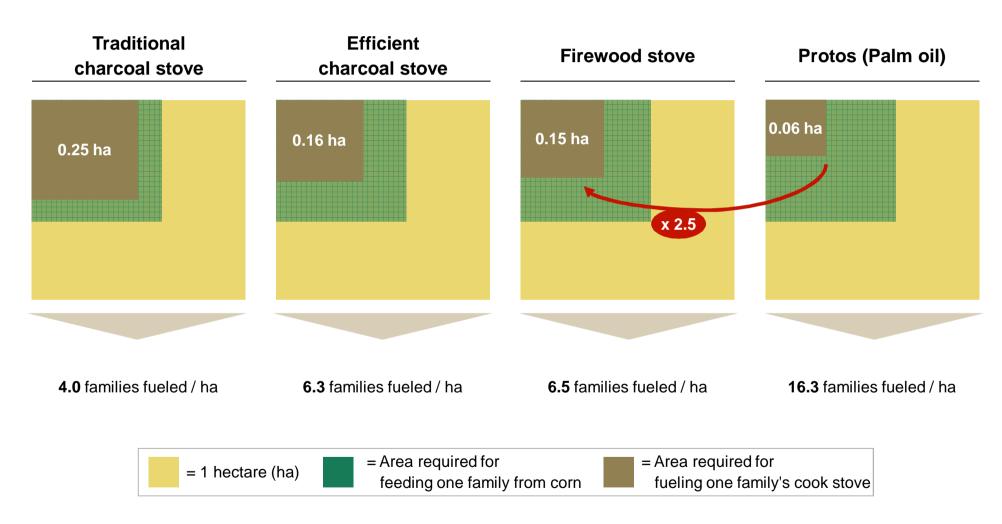
Plant Oils Triple Bottom Line

- Socially
 - Edible vs. non-edible oils
 - **Exploitation of farmers**
 - Local job creation
- **Economically**
 - Profit for local distributors
 - Work within existing distribution channels
 - Creation of local added-value where possible
- **Environment**
 - **Biodiversity**
 - Monocultures
 - Water Usage

Requires Cooperation with International Environmental NGOs and Local CSOs / Farmers Cooperatives

Ensuring Sustainability: Plant Oil Comparisons

Type of Plant Oil	Liters /ha/yr	Land required for 100l/yr	Comments
Used Oil	n/a	n/a	Filter and burn - low cost
Cotton Seed	325	3077 m ²	By product of cotton
Castor	1413	707 m ²	Crop every 5 months
Jatropha	1892	528 m ²	Grows on marginal land
Coconut	2689	372 m ²	Only when distance to markets too great
Palm oil	5950	168 m²	Not currently used in Protos


BSH Focus:

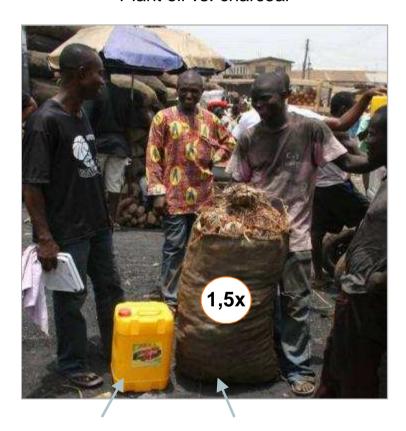
Non-edible Oils	Used oils
Jatropha oil	Mc Donalds
Castor oil	Hotel Chains
Babassu oil	Small business
Neem oil	

By-Products Cotton seed oil Kapok seed oil

→ No competition to food production!

Assumptions for nutrition performance: (2,500 cal per capita per day) x (average family size of 4.3) x (365) / (3,600 cal / kg of corn) / (corn yield of 3 tons / hectare / year) = 0.4 hectares / family Assumption for all wood based fuels is sustainable forestry

Plant oil vs. firewood


25 Liter

1,5 Cubic meter

23 kg

230 kg

Plant oil vs. charcoal

25 Liter

270 Liter

23 kg

90 kg

Note: All fuel quantities shown deliver the same amount of energy to the pot

Agenda

- BSH Overview
- Protos: A more efficient way to cook
- Business Model and Economics
- Indonesia and Beyond

Top Markets Identified

Indonesia

- Largest potential market
- 3-5 million units
- Adequate plant oil
- Massive Kerosene use for cooking
- Govt. desire to phase out subsidies

India

- Huge but complex market
- Widespread kerosene use
- Access to plant oil major hurdle
- Identification of pilot region underway

Southern Africa

- Widespread kerosene use
- Supply chain establishment major hurdle
- Huge potential market for 1 million +

Business Case Indonesia

Market Size

- 240 million population
- At least 100 million people cook with kerosene
- Household Kerosene use 200 400 liters/annum
 (0.5 1 tons /CO₂ per year)
- -5 people per family = ~ 30 million families

10% market share means

2 million potential protos users (up to 4 million burners).

(would require ~200,000 tons Plant Oil)

Protos vs. Kerosene Cooker

Kerosene

■ Fuel: Imported Fossil Fuel

Smoke: High CO & Other Carcinogens

■ Power: .5 – 2 kwh

■ Emissions: 1000 liters kerosene = 2.5

tons CO₂

■ Efficiency: ~35%

Consumption: 1 liter = 2-3 hours

Protos

Fuel: Local plant oils

■ Smoke: 10x lower than kerosene

■ Power: 2 – 2.5 kwh

Emissions: Carbon Neutral

■ Efficiency: ~55%

■ Consumption: 1 liter = 4-5 hours

1 Liter Plant Oil = 1.25 - 2.5 Liters kerosene

Business Case Indonesia

Fuel Switch

Efficiency advantage for households

4 liters kerosene per week = IDR 18,000 2 liters plant-oil per week = IDR 13,000

Preheating fluid = IDR 2,800

Savings = 14%

L

Total annual savings = IDR 114,400

Subsidy advantage for govt.

■ Kerosene subsidy = IDR 2500 (* 4 liters)

Plant Oil subsidy = \underline{IDR} 0 Govt. savings per week = IDR 10000

Govt. savings per year = IDR 520,000

L

Total Annual Savings Potential = approx. IDR 634,000** (€54)

KEROSENE

Market Price = IDR 6000

Household = IDR 4500 (wholesale 3500)

Household use = 3 - 4 liters / week National Subsidy = IDR 5 trillion+/year

PLANT OIL

Market Price = IDR 6500*

Household = IDR 6500 (est.) Household use = 3 - 5 liters / week

National Subsidy = none

^{*}Based on BSH negotiated prices for Jatropha

^{**} Does not include small businesses which may also benefit from protos

Research Conclusion

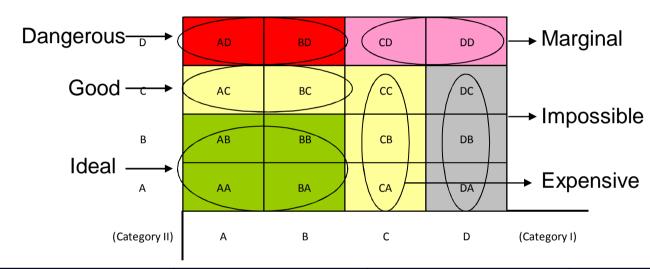
- The Economics appear to fit
- Research indicates that social factors are appropriate
- Infrastructure allows for the establishment of necessary supply chains
- There are no apparent political hurdles

Key Question Remaining: Will the users accept the product?

Field Tests Begin with The Training of Trainers

South – South Dialogue Trainers from the Philippines in Indonesia

Training the Users and Monitoring the Users

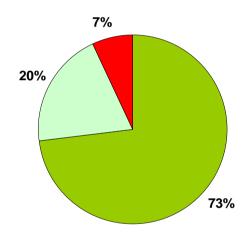

Field Tests

- 30 50 selected users (Alpha Frauen)
- 4-6 weeks
- Results determine next step

User Categorization

Protos Category Overview

Customer Matrix

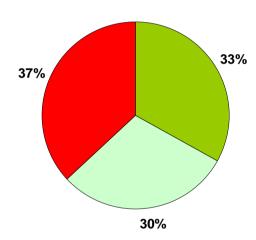


Category	Category	Α	В	С	D
Category I Understanding of training material	User can operate protos properly	User faced problems during 1st week	User faced problems during 1st and 2nd week	User cannot operate protos he/she did not understand training material	
	No difficulty faced in operating	Problems solved during 2nd week of monitoring	Problems no longer found during third week of monitoring	Problems throughout monitoring of 4 weeks	
		Daily usage	Not used daily	Not used daily	Protos not used
Category II Protos Acceptance Le	Protos	Usage frequency ≥ 7 times a week	Usage frequency 4-6 time per week	Usage frequency 1-3 times per week	Not used
	Acceptance Level	Stove used only protos	Protos as main stove previous stove as complimentary stove	Previous stove as main stove, protos as complimentary stove	Previous stove as only stove

Two Key Tests in 2010

Lombok

User- Acceptance



■ gut/Aufwand gering ■ gut/Aufwand hoch ■ keine

Category	%
AA, AB, BA, BB	73,00%
AC, CA, BC, CB, CC	20,00%
AD, DA, BD, DB	7,00%

OKU Timur

User Acceptance

■ gut/Aufwand gering □ gut/Aufwand hoch ■ keine

Category	%
AA, AB, BA, BB	33,00%
AC, CA, BC, CB, CC	30,00%
AD, DA, BD, DB	37,00%

Success with Protos: A Holistic System

pieces need to

Lombok

OKU Timur

Pilot Projects in Indonesia

First 1000 Units: Projects, Partners and Potential

Project 1: Lombok 2010 = 400 Units

- Partner: New World Energy, a Jatropha plantation developer and management company
- Oil: Jatropha
- Total Potential: 600 800

Project 2: Lombok 2010 = 200+ Units

- Partners: a consortium between Fauna Flora International, British American Tobacco, Sustainable Trade and Consulting, Advance Consulting BV, UNRAM, Lumbung & Konsepsi
- Oil: Jatropha & Castor Oil
- Total Potential: <u>3000+ Units</u>

Project 3: Semarang 2010 = 400+ Units

- Partner: Jatro Waterland, a German based fully integrated renewable energy enterprise with large Jatropha plantations throughout Indonesia
- Oil: Jatropha
- Total Potential: 2500+ Units

Where BSH Needs

- Identification of Markets with Appropriate Conditions
- Plant Oil Supply Chain
 - Production and Distribution
 - Criteria and Assurances of Sustainability
- User-training
- Microfinance and Access to Customers
- Cost-Gap Coverage

What we learned: some conclusions

- Technical development of a new technology differs little between developed or developing country
- BoP Market segments have similar needs and requirements as - others just with a different cash flow
- Business model developing, marketing and distribution issues are where the greatest differences emerge
- Protos has and continues to be a positive experience for BSH

Thank You

Distribution and Promotional Points

Store Selling Protos

Local Marketing: Advertisements for Distribution Points

- 1 BSH
- 2 The Protos logo
- 3 Short description of The plant oil stove, German technology
- 4 Name of the persona Mother Mia
- 5 Figure of the persona
- 6 "Affordable, Economical, Safe"
- 7 The Stove
- 8 Detail of the benefits •

Affordable, Economical, and Safe

- Illustration of the product price in comparison to known quantity buying 1 Protos just like buying vegetables for soup 35 times.
- Reminder to purchase the cooking fuel
- Don't forget; buy the oil at the cooperative!

Informational Events

Flyer Announcing Event

Cooking Bicycle*

Protos Truck from Philippines*

^{*}Examples from the Philippines (Protos I), but not yet used in Indonesia

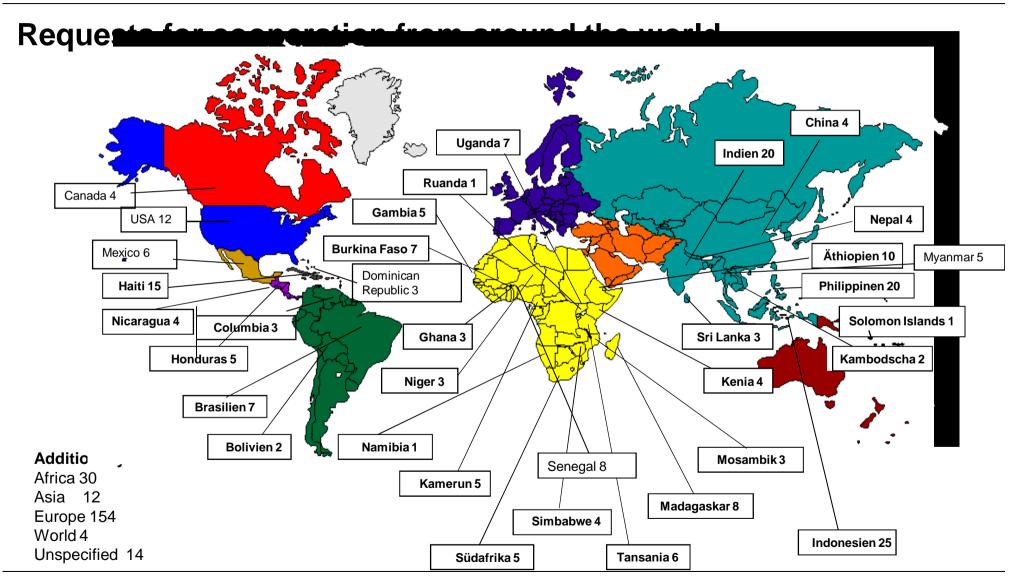
Tapping the "Environmental Markets": CO2

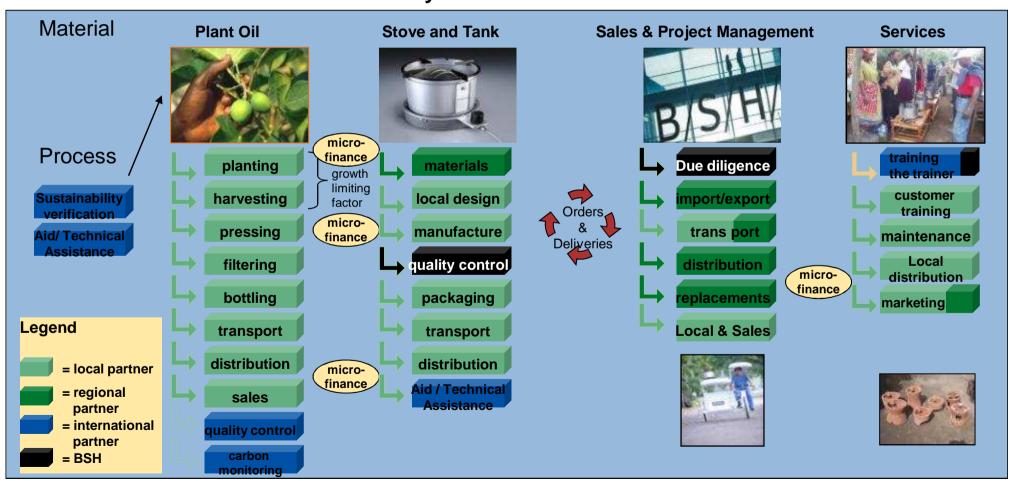
Methodology Submitted to UNFCCC: NM005

Not yet approved due to plant oil controversy

Additionality concept is accepted

Goldstandard VER: Approved


BSH internal Carbon Purchases


Adequate to cover cost gap* & management costs

*minimum of 5000 cookers required for viability

Protos Business Model Challenges

Local Added Value With Sustainability Checks

