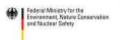


La transition énergétique en Allemagne

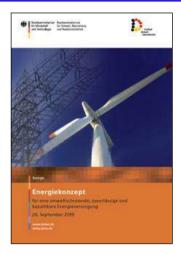

Troisième Journée tuniso-allemande de l'Energie le 26 novembre 2013

Dr. Martin Schöpe

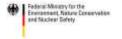
Chef de Division

Affaires internationales dans les domaines de Environnement, l'Energie inclus les Energies renouvelables Ministère Fédérale de l'Environnement, Allemagne

Tunis, 26.11.2013

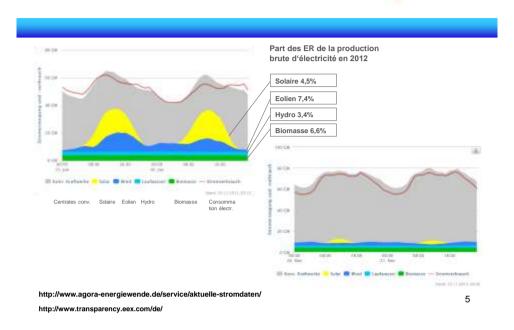

- La transition énergétique et les énergies renouvelables en Allemagne
- Développement des coûts des ER
- Bénéfices du développement des ER
- Enjeu de l'intégration des ER au système
- La coopération tuniso-allemande

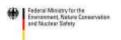
Le concept énergétique allemand de 2010/11

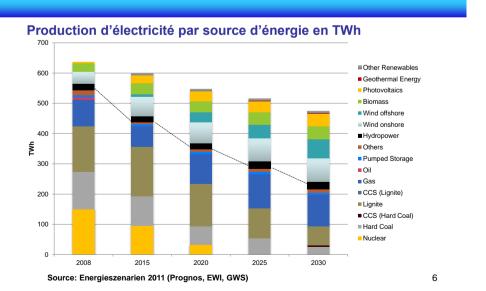


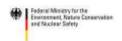
- Piliers: Energie renouvelable et efficacité énergétique
- Abandon du nucléaire d'ici 2022
- Objectifs à long terme
- Corbeilles de mesures ciblées
- Plan de financement pour la mise an œuvre
- Coopération international (PSM, ICI)
- Evaluation sur une base scientifique

3

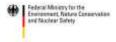

Le concept énergétique allemand de 2010/11: Objectives


	Climate	Renewable energies		Efficiency		
	Greenh ouse gases (vs. 1990)	Share of Electricity (at least)	Overall share (Gross final energy consumption)	Primary energy cons.	Energy produc- tivity	Building moderni- sation
2020	- 40%	35%	18%	- 20%	Increase to 2.1%/a	Double the rate 1% -> 2%
2030	- 55%	50%	30%	Ė		
2040	- 70%	65%	45%			
2050	- 80-95%	80%	60%	- 50%		





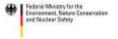
Energie nucléaire remplacée par importations d'électricité, ER et gaz

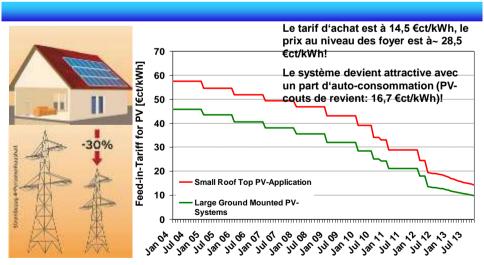


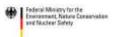
Instrument clé - la loi sur les sources d'énergies renouvelable (EEG)

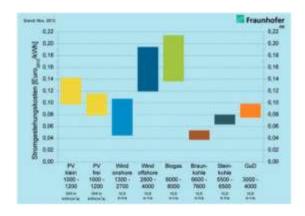
- Access prioritaire au réseau pour ER, transmission and distribution prioritaire
- Prix garantie de rachat ("tariff") par kWh sur 20 ans
- Différents prix par technologie
- Baisse annuelle automatique
- Gestion des couts supplémentaires par les gestionnaire de réseau; élément supplémentaire sur la facture de chaque consommateur de l'électricité (2013: 5,27 €ct/kWh)

- La transition énergétique et les énergies renouvelables en Allemagne
- Développement des coûts des ER
- Bénéfices du développement des ER
- Enjeu de l'intégration des ER au système
- La coopération tuniso-allemande



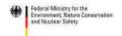

Développement des coûts pour une installation PV en toiture


Dégression du tarif d'achat pour PV



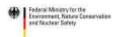
Source: Maike Schmitt, ZSW, 09/2013

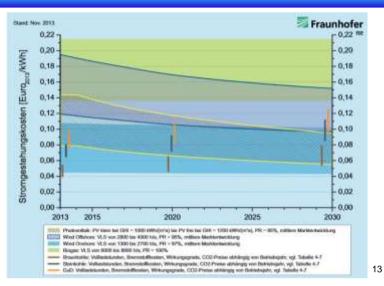
Coûts des énergies renouvelables au niveau des combustibles fossiles

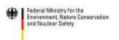

Couts de revient d'électricité €/ kWh

Source: Fraunhofer ISE: Stromgestehungskosten erneuerbare Energien in Deutschland. Nov. 2013

11


Energie nucléaire – une option chère de décarbonisation

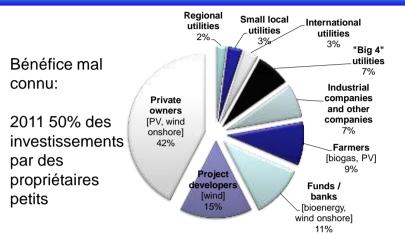

- Exemple Grand Bretagne:
 - Premier investissement dans 2 réacteurs nucléaires de 3,2 GW depuis 1995
 - Coûts d'investissement: 16 Mrd GBP (19 Mrd €)
 - Consortium: EdF, entreprises d'Etat chinoises (CGN, CNNC) sortie du consortium de Centrica (British Gas)
 - Prix d'achat fixe: 89,90 92,50 GBP/MWh (0,10 0,11 €/ kWh)
 → double du prix de gros d'électricité à 45 GBP/MWh
 - Risques d'augmentation des coûts d'investissement (ex. Olkiluoto/ Finlande, Flammanville/ France)


6

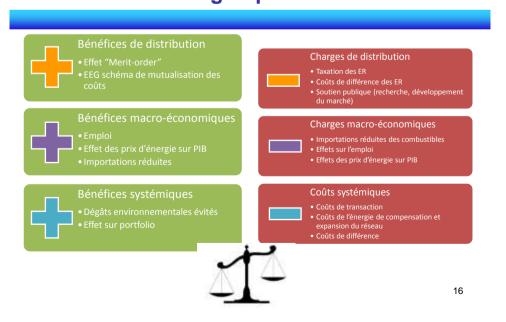
Projéction des couts ER

Couts de production d'électricité €/ kWh





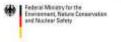
- La transition énergétique et les énergies renouvelables en Allemagne
- Développement des coûts des ER
- Bénéfices du développement des ER
- Enjeu de l'intégration des ER au système
- La coopération tuniso-allemande

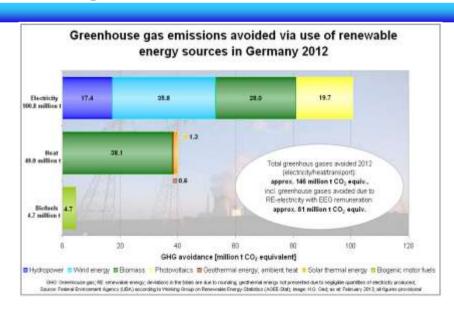

Bénéfices des ER – nouvelle structure de propriété

Source: trend:research, 2010: "Anteile einzelner Marktakteure an Erneuerbaren Energien Anlagen in Deutschland"

Bénéfices compensent coûts de financial la transition énergétique

Coûts et bénéfices des ER (en 2011)

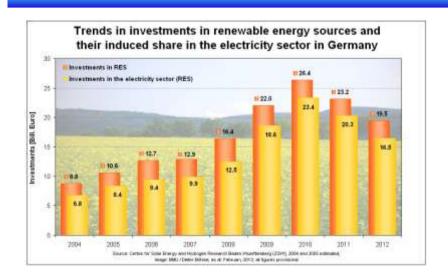


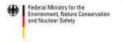

Dégâts environnementales évités 8,0 Mrd Valeur ajoutée local 7,5 Mrd Effet "Merit-order" 2,8 Mrd Importations réduites 2,9 Mrd

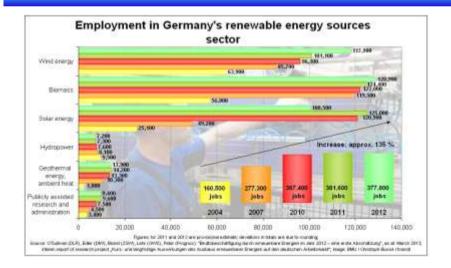
Coûts de différence des ER 13,5 Mrd Coûts de l'énergie de compensation 0,16 Mrd Coûts d'expansion du réseau 0,13 Mrd

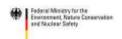
17

Emissions du gaz à effet de serre évitées grâce au RES en 2012



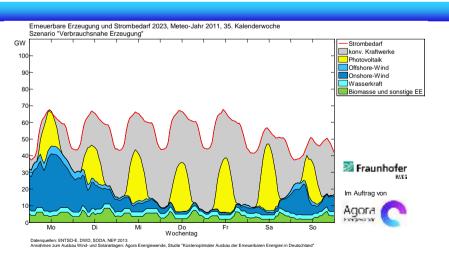

9


Investissements et installations des ER



Emplois dans le secteur des ER en Allemagne en 2012

Sommaire



- La transition énergétique et les énergies renouvelables en Allemagne
- Développement des coûts des ER
- Bénéfices du développement des ER
- Enjeu de l'intégration des ER au système
- La coopération tuniso-allemande

Enjeu technique: Intégration des ER au réseau

Federal Missery for the Environment, Nature Conservation and Naclear Sofety

http://www.agora-energiewende.de/service/aktuelle-stromdaten/

http://www.transparency.eex.com/de/

22

Composants de flexibilisation du système énergétique

Source: BMU: Working Group 3 on Interaction between renewable energy supply, conventional energy supply and demand side. Oct. 2012

23

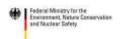
Federal Missery for the Environment, Nature Conservation and Nacional Safety


Expansion du réseau


- Plan de développement du réseau 2012

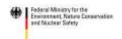
Réseau onshore 20 Mrd. €, Offshore 12 Mrd. € 3.800 km réseau nouveau, (1.700 C.A. and 2.100 C.D.) 4.400 km renforcement du réseau

Expansion du réseau – Interconnections renforcées


25

- La transition énergétique et les énergies renouvelables en Allemagne
- Développement des coûts des ER
- Bénéfices du développement des ER
- Enjeu de l'intégration des ER au système
- La coopération tuniso-allemande

Coopération tuniso-allemande



- Il y a déjà aujourd'hui des parallèles dans les approches de l'Allemagne et La Tunisie dans leurs transitions énergétiques:
 - Des objectives ambitieux,
 - > Des instruments politiques efficaces,
 - > La planification énergétique à long terme
- Coopération sur une base long-terme et fructueuse

Quel-est le chemin future de la Tunisie dans le secteur d'énergie?

- Quel mix énergétique est envisagé à longe terme?
- Qui-est qui gèrera la mise en œuvre du Plan Solaire Tunisien actualisé et peut équilibrer les intérêts divergents?
- ➤ Quels sont les instruments clés pour la mise en œuvre du PST?
- Quel moyens de l'intégration des ER au réseau et au marché sont prévus?
- Quel rôle joue l'expansion du réseau en Tunisie et entre les pays voisins et l'UE?
- Quelle mesures sont envisagés pour sécuriser les investissements privés?

MERCI!

More Information: www.bmu.de/english www.erneuerbare-energien.de/english

25.11.2013 29