Two-Pot Rocket Lorena with Shelf

Uganda

Type

Fixed household rocket mud stove with two pot-holes and a chimney. Built inside kitchen or house.

Names

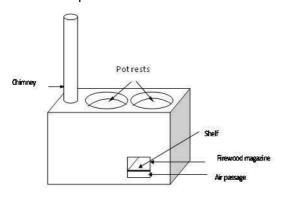
Rocket Lorena (Uganda)

Fuel

Fuelwood

Agricultural waste such as Maize cobs is also widely used in Uganda.

Country of origin / Dissemination area

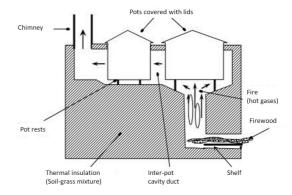

Uganda

Rocket stove design guidelines were developed by Aprovecho Research Centre (ARC) in 1982.

GTZ EAP adapted the stove to the local situation and launched it in 2003 after which 430,000 stoves were dissemination until 2008.

Users

Rural and peri- urban households.



General Description

Fixed mud stove with:

- Double Cavity (pot-holes) for 2 pots.
- Single fuel feed and combustion chamber.

- Built according to rocket stove guidelines with a tall L-shaped combustion chamber; the pots sit within the stove body, supported by pot rests at the bottom of the pot holes.
- Combustion chamber with circular or square cross-section (depending on mould used).
- Pot-holes are customised for specific pot diameters.
- Firewood shelf supports the burning firewood and creates the gap below it for the air inlet to aid combustion. Also the ash is removed from the gap below the firewood shelf.
- The stove has a rectangular cross section and overall size depends on the pot diameter.
- The stove is primarily used for cooking a wide range of foods across the regions where it is disseminated.

Stove dimensions

Overall stove dimensions depend on the pot sizes.

Estimated lifespan: At least two years.

Materials used

Built of an insulated mixture consisting of organic material (chopped grass, sawdust or chopped dry banana leaves) bound together with mud. The stove is either built as a homogenous block, or built of stones and bricks plastered with this insulating soil mixture.

Moulds are required during construction to create the cavities for chimney and combustion chamber. Different regions design moulds depending on availability of materials. Banana stems are widely used in Uganda for moulds

Firewood shelf: Ceramic tile or metallic piece.

Performance

Results from water boiling tests (WBT) and controlled cooking tests (CCT) indicate fuel saving between 50%–60% compared to a well-tended three-stone fire. There is high potential to alleviate indoor air pollution through improved combustion, if the chimney is properly maintained.

Production / Supply

Produced by local artisans that are trained and supervised by local, more experienced artisans.

The stove builders live in the villages and are directly contracted and paid by the users. Built on demand according to the size of the used cooking pot.

Stove payments by users are in cash, labour contribution or barter depending on negotiating ability with the builder.

Price

In Uganda, the average price is €1.35 – 4.50 (UGX 5000-20,000) depending on region, size and negotiating ability.

Strengths and weaknesses

Positive

- + Efficient, cheap stove with great potential to reduce indoor air pollution
- + Rapid level of adoption by large numbers of people
- + Income generation in the villages through use of locally available materials and the employment of local stove builders

Negative

- Only applicable where the appropriate sticky soil and organic material is available
- Considerable wear and tear, especially in the fire chamber, and around the pot-rests and pot-holes due to vigorous stirring required in making *ugali* (maize paste)
- Regular maintenance needed
- The dissemination through trained local stove builders needs a quality monitoring system maintained over several years
- Metal or ceramic firewood shelf is expensive and alternative materials not durable
- Requires the second pot cavity to be covered if not in use for effective draft

Available documents:

 Stove construction manual:" How to build the improved household stoves" GTZ-EAP, November 2004 revised 2008

 $\frac{https://energypedia.info/images/9/93/G}{TZ-}$

HOUSEHOLD Stoves Construction Manual June 2008.pdf

Cost-benefit analysis
 http://www.gtz.de/de/dokumente/en-cost-benefit-analysis-uganda-2007.pdf

Source of pictures: GIZ-PREEP, Uganda

HERA –Poverty-oriented basic energy services

Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Postfach 5180 65726 Eschborn

hera@giz.de www.gtz.de/hera

