Repairability Standard for Hi-tech Equipment

V.2.6, 2016-08-03

Hi-tech electronic equipment is increasingly manufactured in such a way that it requires very specialised and expensive equipment to repair it – if indeed repair is even possible. Sometimes this is done for ease of manufacture, sometimes to save manufacturing costs, sometimes simply out of habit, and occasionally quite intentionally to make repair impossible.

If hi-tech is to have a place in the Developing World where supply chains are long, and if products are to have a useful life beyond the time during which the original manufacturer is prepared to repair them, and if local repair is to be economical, this must change.

There is an obvious tension between the manufacturer retaining control of his IPR, and the ability of an engineer from a third party to repair the product, or modify its behaviour if circumstances change. However, it should be an objective that products should last as long as possible, and continue to work even if the manufacturer loses interest or goes out of business.

To encourage sustainability in hi-tech manufacture, a standard is proposed against which equipment may be assessed and tested, and certified to be repairable.

Requirements or recommendations in black should be testable on Day1, and again after any significant hardware change. Those in blue endure for the life of the product, and must therefore be written into procurement contracts.

It is proposed that for certification, the following criteria **should**, or **must** be met:

	Requirement/Recommendation	Reason	
1.1	The product must be held together with	It must be possible to get inside the unit to	
	security screws, and not ultrasonically welded	effect a repair.	
	together		
1.2	The security of security screws should be finely	A competent engineer must be able to get	
	judged, so that an ill-equipped novice cannot	inside the unit without breaking it.	
	open the unit, but not so secure that it is		
	impossible for a competent engineer to open		
	it. Security screw heads must be such that a		
	standard hex security screwdriver kit can open		
	the unit.		
1.3	Security screws must not be at the bottom of a	If they were, a very specific screwdriver	
	deep narrow hole, such that a universal hex	would be required to open the unit.	
	screwdriver cannot reach them.		
1.4	Fixing screws should be of one sort. If this is	Putting screws in the wrong place will mean	
	not possible, they should be very obviously	either that the unit is not securely closed, or	
	different, (e.g. significantly different length or	that the case is damaged.	
	diameter, different plating) so that during		
	reassembly it is easy to put the correct screw		
	in each location.		
1.5	Where other screws are accessible on the	So engineer does not undo screws that do	

1. Access for Repair

	outer casing of the unit, cover fixing screws should be indicated with a special symbol, eg → or ×	not need to be undone to remove the cover – especially if to do so could leave a loose nut inside the unit.
1.6	One-time fixing clips must not be used.	It must be possible to take a unit apart, and put it together again, without needing to replace anything simply through doing that. (Replacing cable ties is acceptable.)
1.7	Components must not be potted in epoxy.	If they are, they can't be repaired.
1.8	If components are glued in place, it must be possible to break the glue to remove a broken part, without damaging what it is glued to	For example, the glass in front of a display should not be so tightly bonded to the display that replacing a broken glass breaks the display as well, or removal of a battery bonded to a case damages the case.

2. Documentation, Circuit diagram/schematic

	Description and the Description Description		
	Requirement/Recommendation	Reason	
2.1	A service manual must be available. It should	The chances of repair being successful are	
	be both downloadable from the Internet and	hugely increased by the availability of a	
	supplied in a paper form with the unit, along	service manual to the repair engineer.	
	with the user instruction manual.		
2.2	If any preventive maintenance is	The need for preventive maintenance in the	
	recommended for the unit, this must be	Developing World is not widely understood,	
	spelled out in a separate section of the user	and almost always neglected.	
	manual (if the user can do it) or the service		
	manual (if an engineer is required).		
2.3	The schematic of the unit must be available to	Diagnosis is hugely easier if a schematic is	
	the service engineer, without needing to be	available.	
	sent to him/her by the manufacturer. If		
	manufacturers are concerned to protect their		
	IPR, the schematic does not need to contain		
	every detail – control circuitry can be shown		
	as a box – but all power and sacrificial		
	components must be identified and shown.		
2.4	The schematic should be on the inside of the	So that there is no possibility of its loss.	
	equipment case.		
2.5	The schematic should also be in the service	So the engineer has it when he needs it.	
	manual.		
2.6	If there are any adjustable components in the	Adjustment may be necessary due to drift	
	unit, the method of adjustment/calibration	with time, user fiddling or component	
	must be described in the service manual.	replacement.	
	Adjustment must not require a custom		
	calibration jig.		

3. All electronic components

General principles: Every foreseeable fault **should** be diagnosable and repairable using standard tools, a soldering iron and a multimeter (and just possibly an oscilloscope). A surface mount workstation **must** not be required to replace any part that is considered likely to fail.

	Requirement/Recommendation	Reason
3.1	All electronic components apart from mask-	There must be confidence that replacement
	programmed parts and transformers must be	parts will be available when needed.

	available from at least two manufacturers, and either manufacturer's part must work equally well. Semiconductor parts that are known to be near end of life must not be designed in.	
3.2	Any other custom parts that could possibly fail (eg transformers) must be available as spares for [5] years. A production run should include making extra quantities to be held back as spares.	There must be confidence that replacement parts will be available when needed.
3.3	Spare parts should be made available at a proportionate price – that is to say, a minor component should be available at a small percentage of the purchase price of the complete product – and any handling charge must be modest and reasonable.	Today, it is often cheaper to scrap the whole product and buy new, than to obtain the spare part – even if labour is a zero cost.
3.4	If construction is modular, each module should be considered as a custom part, and thus should be available as a spare for [5] years.	For example, a sealed RF module should be available as a spare, as it may be impossible to replace an active component within it.
3.5	If a chip is mounted directly on the printed circuit, the whole printed circuit must be considered to be a custom part.	A chip mounted under a plastic bump on a printed circuit cannot be replaced.
3.6	Parts must not have their identification numbers ground off	You can't replace a chip if you can't read its part number.

4. Printed circuits

	Requirement/Recommendation	Reason
4.1	Multi-layer printed circuits must not be used (double-sided is fine).	Without a custom-built test jig, it is impossible to detect a printed circuit fault inside a multi-layer board.
4.2	The printed circuit should as far as possible not be relied on to provide mechanical strength.	Flexing of printed circuits is a common cause of faults.
4.3	Unless the power plane is required to act as a heat sink, all pin-through-hole pads in ground and power planes must have a thermal relief design	It is very difficult to heat a ground or power plane sufficiently with a soldering iron to remove a component from a hole, without damaging other components.
4.4	All surface-mount solder pads must be visible. Solder-bump packages must not be used.	It must be possible to re-make a solder joint with a (perhaps very small) soldering iron. It is not possible if the solder joint is underneath the chip on the printed circuit.
4.5	Zebra-strip LCD display connectors must have a means to hold them in position	It is very common for these to get displaced, losing some elements of the LCD display.

5. Power electronic components and moving parts

This includes:

- All semiconductors exposed to high voltages or high currents, including diodes and bridge rectifiers, FETs, IGBTs, SCRs, triacs
- Large electrolytic capacitors

- High-wattage resistors
- Any other component apart from transformers that is likely to operate at more than 20'C above ambient.
- Motorised components eg cooling fans
- All other moving parts

	Requirement/Recommendation	Reason
5.1	No power component should be surface- mounted if it has more than five pins, and there must not be copper tracks between the pads.	It is very difficult to replace SMT devices with many pins just using a soldering iron.
5.2	Any component that must not be replaced with a generic equivalent must be identified as such.	If there are very critical characteristics necessary for safe or reliable operation, these must be evident to the engineer replacing the part.

6. Programmable parts, firmware and apps

	Requirement/Recommendation	Reason
6.1	Boot loaders should be mask-programmed	So the boot loader cannot get corrupted,
0.1	boot loaders should be mask-programmed	even during an aborted upgrade.
6.2	Flash memory firmware must be field-	So that the program can be reloaded if
0.2	reloadable.	
6.3	Programmed parts should not require special	corrupted, or an update is required. It may be necessary to email the program to
0.5	programming equipment.	the engineer, and he may not have access to
	programming equipment.	a programmer.
6.4	With suitable facilities, it should be possible	This may be necessary if a programming file
0.4	to extract the program from a programmed	is not available.
	part, and copy it to an off-the-shelf part.	
6.5	Programmed parts must be identified as such,	So the engineer knows that a part off-the-
0.5	and if not field-upgradeable, must have a	shelf cannot be used.
	revision number marked on them.	
6.6	Programmable components that cannot be	So they can be removed to be re-
	re-programmed in situ must be socketed	programmed.
6.7	Software and firmware should/must be open-	Requirements change, and it may be
	source. (This is an emotive issue.)	necessary to change the software, to
		continue to use the product. Without this,
		the product will become useless.
6.8	Software source code that is not open-source	Ditto (also an emotive issue!) It must be
	must be lodged in escrow with a third party,	assumed that software maintenance will be
	such that if the manufacturer collapses or	required throughout the useful life of the
	otherwise decides no longer to support the	product.
	product, the third party will release the	
	source code to another organisation willing to	
	take on the responsibility of software	
	maintenance	
6.9	Over the lifetime of a product, minor	A software change could cause old hardware
	modifications to hardware and software will	to stop working.
	be implemented, for example to fix bugs.	
	There are likely to be combinations of	
	hardware revision level and software revision	

	level that are incompatible. Software revisions must be tested prior to release on every earlier version of hardware that is in the field. Any unworkable combinations must be clearly stated.	
6.10	If there are any hardware revisions in existence that cannot tolerate a software revision, the upgrade must not happen automatically, and if attempted manually, should be prevented by the software upgrade testing the hardware revision state before executing.	What happens if the upgrade is to fix something that is discovered to be dangerous? (How would we do a product recall of a consumer product in Africa??)

7. Batteries

	Requirement/Recommendation	Reason
7.1	Batteries must be readily replaceable by a	One should expect to have to replace them
	service engineer.	routinely – even rechargeable ones.
7.2	Batteries should not be user-accessible, unless	Users will replace batteries with others of the
	any battery of the same physical size may be	same size, regardless of the battery
	used.	technology (or what the manual says!).
7.3	Printed-circuit-mounted batteries that are	Batteries will wear out during the lifetime of
	soldered in must be widely available in the	the product.
	correct configuration	
7.4	Sufficient information must be provided to	The original battery may not be available.
	the service engineer to enable him/her to tell	
	if a replacement battery from a different	
	manufacturer is suitable.	

8. Sacrificial and safety-critical components

This includes:

- One-time fuses
- Lightning arresters
- Fusible resistors
- One-time thermal fuses (but not resettable thermal cut-outs)
- Class X or Y safety-critical capacitors

	Requirement/Recommendation	Reason
8.1	At design time, where protection can be	This avoids a need for continual supply of
	achieved without using a sacrificial	replacement sacrificial components, and the
	component, it should be (for example, by	danger that safety components will be
	designing in a resettable fuse)	circumvented.
8.2	Sacrificial components should be socketed	So replacement requires the minimum of
		tools
8.3	Sacrificial components must not be surface-	Replacement must be easy (or the repairer is
	mount	liable to just jumper it out)
8.4	Sacrificial components should generally not be	The user is unlikely to have the correct
	user-accessible, but only replaced by a service	replacement part. It is also desirable to have
	engineer.	an enquiry into why it blew.

8.5	Sacrificial components must be easily available from many suppliers	To encourage the correct replacement
8.6	If sacrificial component is socketed, one or two cold-spares should be provided inside the unit, or if externally accessible, in the user pack.	To encourage the correct replacement
8.7	It must say in the legend on the printed circuit adjacent to safety-critical components what the rating must be.	To encourage the correct replacement

9. Connectors

_	Population Post	Desser	
	Requirement/Recommendation	Reason	
9.1	All surface-mounted connectors that are	Surface-mounted connectors are notorious	
	accessible to the user must have at least two	for coming adrift from the printed circuit.	
	pin-through mounting holes.		
9.2	All connectors must be polarised	So it is not possible to put the plug in the	
		wrong way round	
9.3	Two connectors in the unit that are	So there is no possibility of plugging into the	
	electrically incompatible must also be	wrong connector.	
	physically incompatible.		
9.4	Internal connectors should be retained with a	To prevent connectors shaking lose in transit	
	blob of silicone	on bumpy roads.	
9.5	External connectors (except those intended	Accidents happen! (Exact test TBD)	
	for fixed wiring) must be tested to survive a		
	sideways force, such as may be applied when		
	a user trips over a lead		
9.6	Internal leads that will be flexed during repair	Assume the unit will be taken apart several	
	of the unit must be of stranded wire (or a	times in its lifetime, and wires must not	
	flexible printed circuit)	fatigue and break.	
9.7	Where a particular connector is already in	Users are liable to assume that if a plug	
	common use for a particular purpose, it must	physically fits a socket, it will be safe to plug	
	only be used for the same purpose on the	it in – even if it is from something completely	
	unit.	different.	
9.8	Retaining catches on connectors must not	If they catch, they will break off. (How many	
	catch when the connector is pulled through a	RJ-45 leads have you seen with the catches	
	hole by the lead	broken off?)	
9.9	All exposed metalwork must either be	It must be assumed that the user may short	
	completely insulated or at the same voltage.	any two metal items together.	
9.10	If there is exposed metalwork on the roof and	To prevent electrocution by lightning.	
5.20	inside the building, the exposed metalwork		
	must be connected to earth		

10. Separable components

It must unfortunately be assumed that any separable components that come with the system will, over time, be lost or broken.

	Requirement/Recommendation	Reason
10.1	The system must be usable without minor components (for example a remote control, or mounting bracket)	The component may get lost or broken.
10.2	A battery cover or protective unit lid should	If it is, it will get lost!

	not be detachable.	
10.3	Supplied leads must survive a trip test.	Accidents happen! (Exact test TBD)
10.4	If a connector on the end of a lead gets	Connectors are likely to be easier to obtain
	damaged (for example crushed), it should be	than custom leads.
	possible for the service engineer to replace it	
	without replacing the whole lead.	
10.5	It must be possible for an engineer with	It may be necessary to extend a lead, or to
	suitable tools and joining materials to cut	pass it through a hole smaller than the
	and join a lead	connector on the end.

11. The total system

	Requirement/Recommendation	Reason
11.1	If operation relies on the mobile phone network, (or even on being within the coverage of a particular operator), this must be clearly stated prior to sale or supply.	This may make the product unusable in its proposed application
11.2	If operation relies on communication with a remote server on the Internet, this must be clearly stated prior to sale or supply, and the supplier must commit that this will continue to be operational for [5] years	This gives the supplier (or someone who takes the supplier over) absolute control over the future of the product, even after outright purchase. If the supplier fails, in this case the future will be uncertain.
11.3	Any upgrade to the server software must be subject to the same backwards compatibility tests described for firmware above (§6.9,6.10).	The supplier must not force users to buy new hardware.
11.4	A process of continuous improvement requires that an effective mechanism must be provided, whereby a user or field service engineer can communicate issues back to the design team, to enable remediation in the next hardware revision. This facility must continue to function after the end of the warranty period.	The Design Team cannot fix problems that they don't know about.

Chris Moller, C.Eng, MIET, Cambridge UK 18July2016.