Assistance on Liquefied Natural Gas Import Options for Myanmar Phase 1:

Presentation of Draft Final Report

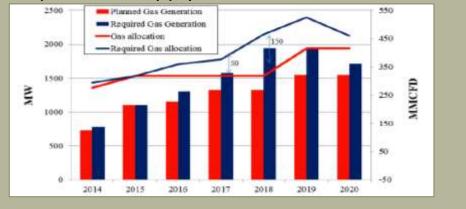
January 2017

serving the energy industry

MJMEnergy Ltd

www.mjmenergy.com

©2017


Section 1: Introduction

Background

Overview of the Myanmar gas market

- Energy consumption is among the lowest in the world, 70% of the population have no access to electricity.
- Consumption per capita is around 160 kWh per annum, 20 times less than the world average.
- Only 16% of rural areas have power grid access
- Gas fired power generation demand is growing
 - Indigenous gas production is constrained due to years of under investment. Resulting in a potential supply/demand deficit.

Possible gas supply options for Myanmar

With this supply/demand deficit, there are 3 options.

Option 1 - importing LNG to supplement domestic gas while new gas exploration gets underway.

Option 2 - Myanmar's swapping LNG with local gas.

Option 3 – Supply options can include cooperation with neighboring countries on bilateral / regional gas trade, to jointly benefit from existing and future natural gas supply/import infrastructure.

Objectives of this project

- Providing support to the Government of Myanmar (GoM) in developing a gas sector development plan by focusing on the near-to-medium term options to meet the gas demand in Myanmar.
- Focusing on gas import options related to LNG, which could initially be used as a bridging fuel while new gas exploration gets underway in Myanmar.
- In particular, the focus is on the possibilities for LNG receiving facilities in Myanmar, which given the proposed timescales suggest prospects for development of floating regasification LNG terminals.
- In particular, this project will be focused on three key tasks, Tasks 1(a), 1(b) and 1(c) which are summarised in the right hand panel.

Key deliverables for this project

Task 1(a) – Siting analysis to assess potential locations of LNG import facilities in Myanmar.

Task 1(b) – Development of a prioritisation framework and accompanying analytical tool for LNG import options and locations.

Task 1(c) – Prepare an overview of the LNG markets that Myanmar may access with a view of procuring LNG to be physically swapped with gas export partners

The MJMEnergy Team

- MJMEnergy have developed a bespoke Project Team as follows:
- MJMEnergy is a UK-based firm providing technical and commercial consultancy throughout the world with a clear focus on natural gas and LNG related projects.
- Penguin Energy Consultancy (PEC) is a UK-based, independent energy industry techno-commercial consultancy and training provider. PEC has been involved in 46 LNG projects in 28 countries over 20 years, In addition PEC will be assisted by CA Metocean consultants
- Economic Consulting Associates Limited (ECA) was formed in 1997 to provide economic and regulatory consulting services to industry and government. ECA specialises in advising on economics, policy and regulatory issues in the utilities industries, with particular expertise in the gas sector.
- Drennan Marine Consultancy Ltd is a LNG marine specialist with experience working in over 20 countries worldwide and is well used to ranking multiple locations in a structured and consistent way against relevant marine criteria including natural shelter, navigational risk and the capability of local services.

Members of the consortium

Drennan MARINE CONSULTANCY

Section 2: Key Issues

Key Issues – Schedule and duration

- The economy has been growing and demands more electricity.
- Current hydroelectric capacity is limited.
- ➤ Gas fired power generation demand is growing.
- Significant quantities of Myanmar's gas is sold to Thailand and China.
- There is an impending gas shortage in Myanmar.
- MOGE is under considerable pressure to provide additional gas.
- Myanmar's upstream sector is exploring for new supplies but schedule is mid term to long.
- LNG is needed to provide a bridging solution.
- The need is urgent.

©2017

The contract duration is uncertain depending on the success of offshore drilling.

Key Points

There is considerable pressure on the MOGE to resolve its gas shortage quickly.

Whilst additional supplies of gas from Myanmar's upstream resources should be available this may take longer than expected.

LNG is needed as bridging solution but the duration of the supply is uncertain.

Key Issues - Metocean environment

- Successful commercial operation requires the LNG facility to operate for a very high percentage of the year (typically >97%). This requires the LNG facility to
 - Remain connected to the gas export pipework Be able to offload LNG from LNG carriers on schedule.
- Metocean conditions (wind and wave) are the main external factor in determining availability and operability.
 - Coastal waves were simulated using numerical modelling at each location.
 - 20 years long time series of wave height, wave direction, wave period, wind speed and wind direction were derived to assess the level of exposure.

Key points

Met-ocean analysis is key to the site selection

Key Issues - Social, cultural and environmental issues

- Also key in deciding the suitability of each site will be the inclusion of the following factors:
 - Impact on sensitive environmental areas such as national parks, marine reserves, coral and mangrove forests, etc.
 - Impact on community issues such as fishing grounds and tourist areas (revenue generation).
 - Impact on culturally sensitive sites such as temple complexes, sports stadia etc.
- Maps, internet resources and guide books have been consulted to establish headline impacts, if any.
- External project financing will be contingent on good environmental performance.

©2017

Key Points

The Social, cultural and environment assessment is at a very high level and only uses publically available data.

Good environmental performance is key to project financing.

Key Issues – Weather and geology

Weather

- Weather systems primarily come to the coast of Myanmar from the south west.
- The south west monsoon can produce high winds and flooding.
- Cyclones are a regular feature of Myanmar's weather.

Geology

- Myanmar sits on the borders of 3 tectonic plates.
- Earthquakes caused by plate movement and active faults are common.
- Some volcanic activity is also present.

Key Points

Severe weather can be expected during the lifetime of the LNG facility.

A significant earthquake is possible during the lifetime of the LNG facility.

Key Issues - Local infrastructure

- A LNG facility needs local infrastructure to be able to be constructed, maintained & operated:
 - Tugs able to move and position the LNG carrier at the LNG facility.
 - Roads or marine transport able to deliver construction equipment and material, operating consumables and provide access for staff and vendor representatives.
 - Availability of ports able to provide services such as pilotage, importation of equipment etc. and have appropriate rules and experience of hydrocarbon operations.
 - Access to skilled people to operate or support the LNG facility or the ability for expatriates to access the facility.

Key Points

Myanmar has limited local infrastructure and much of the required capabilities are remote from the proposed site.

Key Issues – Cost and ownership

- A LNG facility and the associated importation contract is likely to be the largest investment Myanmar has made.
- Some technology options may be leased rather than purchased to reduce impact.
 - Leasing reduces control.

©2017

- ➢ BOT/BOOT options may be available.
- Capital investment in owned facilities may be large compared to the potential duration of the LNG import contract.
- Capital and operating (including leasing) costs need to be analysed on the same basis.

Key Points

Capital and operating costs need to be analysed on the same basis.

12

Key Issues – Storage capacity and vaporisation rates

- LNG delivery may be delayed by bad weather or gas vaporisation may exceed norms leading to a shortage of LNG.
- Some storage margin within the LNG facility to keep gas export/power generation running is important.
- Storage is expensive.
- Security of supply/Storage margins are a political issue and should be set by MOEE.
- Vaporisation capacity is relatively inexpensive and therefore not considered a key issue.

Key Points

Security of supply needs to be set by MOEE.

LNG storage is expensive.

Vaporisation capacity is inexpensive and not a key issue.

Key issues – Pipelines

- RLNG needs to be transported to the power plants by gas transmission pipelines.
- Myanmar's pipeline network is old and is claimed to be in poor condition.

Key assumptions

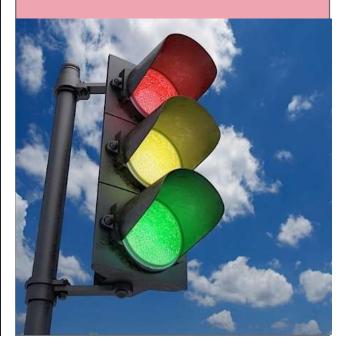
©2017

- All projects have been costed on the basis of building new 30 inch pipelines.
- Based on a flow of 500mmscfd a 30 inch pipeline would not require compression.
- The existing pipeline network may need to be expanded or reinforced to cope with the additional demand – these costs are not included.

Overview of gas pipeline infrastructure in Myanmar

14

Section 3: Site Selection

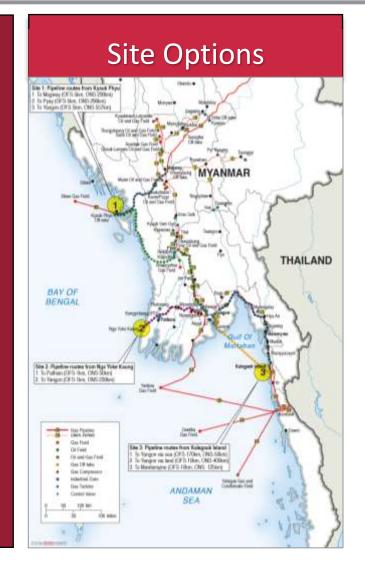

Methodology

A three level selection methodology has been used

- Stage 1 (Concept selection) Technology concept selection is based on overriding system performance requirement. (Schedule and ownership, etc.)
 - Stage 2 (Qualitative selection) A qualitative tool based on traffic lights provides preliminary scoping of a range of sites.
 - Stage 3 (Discounted expenditure selection) –A simple discounted expenditure tool which allows both capital costs and operating costs to be compared simultaneously is used to provide the 3rd stage of selection.

Key Points

3 level selection process which improves in granularity as it progresses.


Site overview

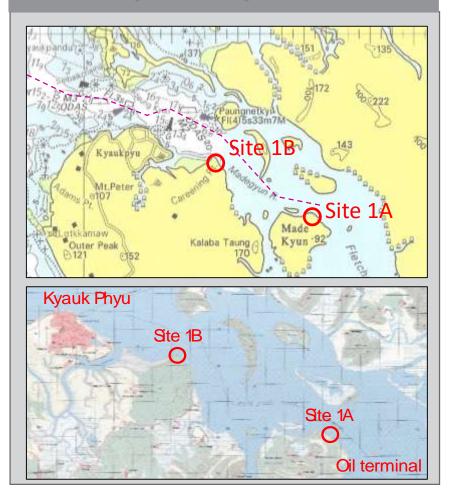
- MOGE requested that 3 general areas were examined for suitable LNG import sites as shown below
- Kyuak Phyu in Rakhine state
 2 sites reviewed on the Madegyan River.
- Nga Yoke Kuang in Ayeyarwady state
 - 2 site onshore in Ngayok Bay.
 - 2 sites offshore in mid depth and deep water.
- Kalegauk Island in Mon state

©2017

serving the energy industry...

- \succ 1 site onshore on the east of the island.
- 1 site offshore in mid water to the northwest of the Island.

Section 4: Site 1 Kyuak Phyu

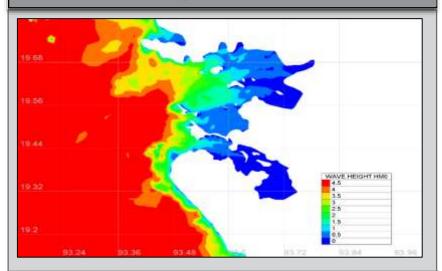


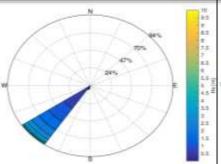
Site 1: Kyauk Phyu overview

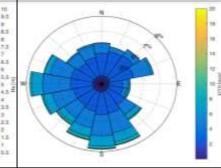
Two sites considered on the Madegyan River to the south east of Kyauk Phyu

- Site 1A on Made Island close to or adjacent to the Shwe Oil Terminal.
- Site 1B on Ramree Island close to the Naval Base at Careening Point.

Site 1: Kyauk Phyu overview

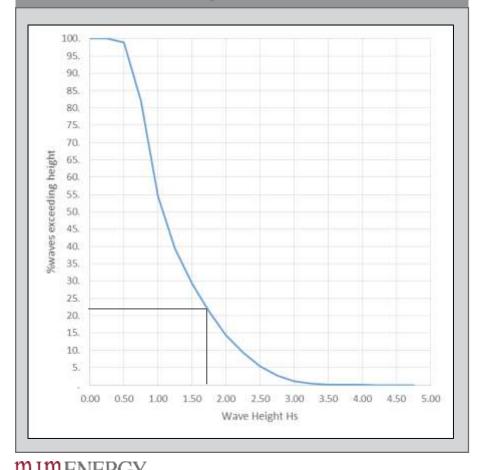


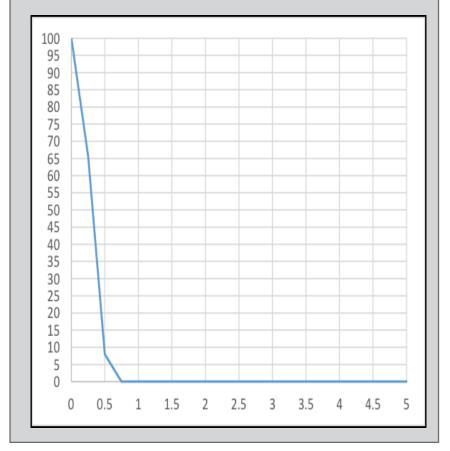

Site 1: Metocean analysis


- Both sites are well sheltered by Ramree Island from the prevailing SW wind and monsoon.
- Non cyclonic storms will not affect the LNG facility.
- Winds are insufficient to challenge
 LNG carrier mooring guidelines.
- > A very good marine site

Non Cyclonic Storm

Wave & wind rosettes

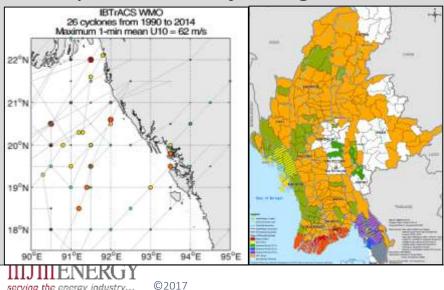




Site 1: Metocean analysis

% Wave exceedance At the pilot station

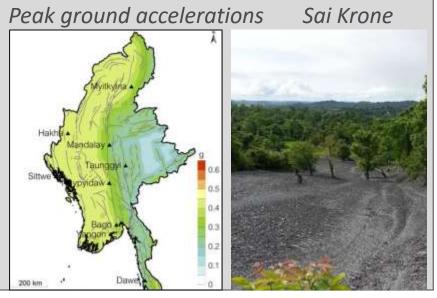
% Wave exceedance At the berth


serving the energy industry... ©2017

Site 1: Weather & Geology

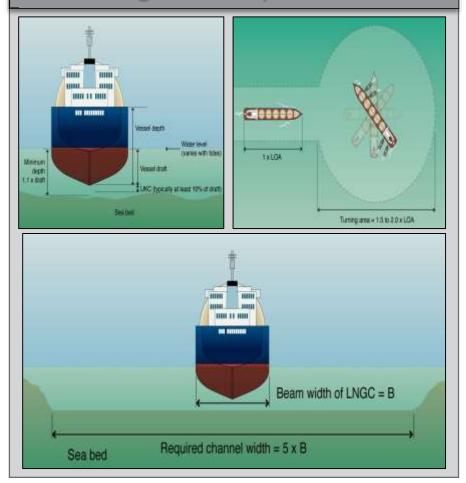
Weather

- Cyclones are prevalent in Northern Myanmar and should be expected.
- Flooding has occurred twice since 2010.


Cyclone tracks & flooding events

serving the energy industry ...

Geology


- Magnitude 4 and 5 earthquakes have occurred nearby.
- High peak ground accelerations are anticipated (0.4 - 0.45g).
- Sai Krone mud volcano near Site1B.

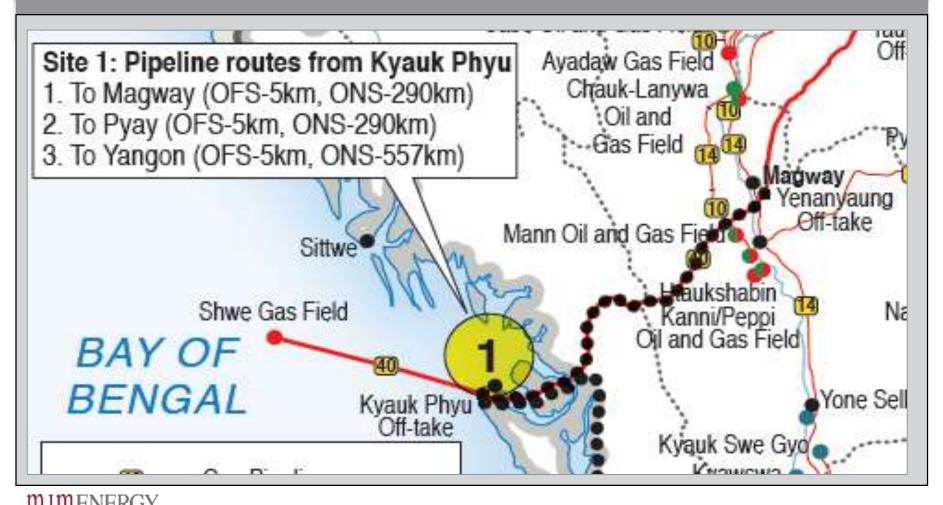
Site 1: Navigation analysis

- A deep water channel to the oil terminal already exists and is large enough for LNG carriers.
- Jetty is relatively short but should be optimised with the minor dredging required to make a berth pocket out of the main channel.
- > No wave protection required.
- > A good marine site.

Navigation requirements

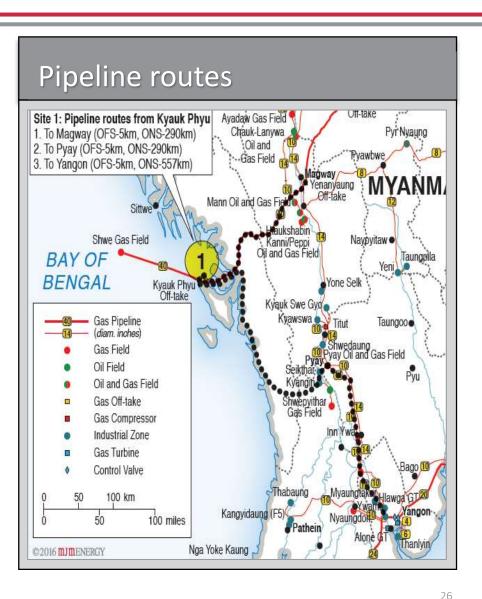
Site 1: Environmental, Social & Cultural Impact

- Mangrove is definitely present in Combermere Bay. Coral and seagrass may be present.
- Oil terminal has upset local residents who have made environmental and economic claims
- Protests against development should be expected.
- Anecdotal comments about issues around the oil and gas pipelines.


Environmental impacts

Mangrove areas around Kyauk Phyu

Pipeline & terminal protests Negotiate access to the existing Shwe pipeline to Magway



Site 1: Pipelines - new

- Option 1 New 290km pipeline to Magway in the ROW of the Shwe pipeline
- Option 2 A new 290 km pipe to Pyay following the route of the current road.
- Option 3 A new ROW in the road to Pyay and then follows the 14" pipeline to Yangon, total distance estimated at around 557km.
- All pipelines are 30 inch to avoid need for compressor stations.

©2017

serving the energy industry ...

Site 1: Local Infrastructure

- Suitable tugs available at oil terminal – availability uncertain.
- Unable to provide essential business services for foreign investors.
- Little industry and low skilled workforce.
- Health care underfunded and poorly equipped.
- > No significant port infrastructure.
- Poor road connections.

Tug Infrastructure

5 tugs at oil terminal

Site 1: Technology selection

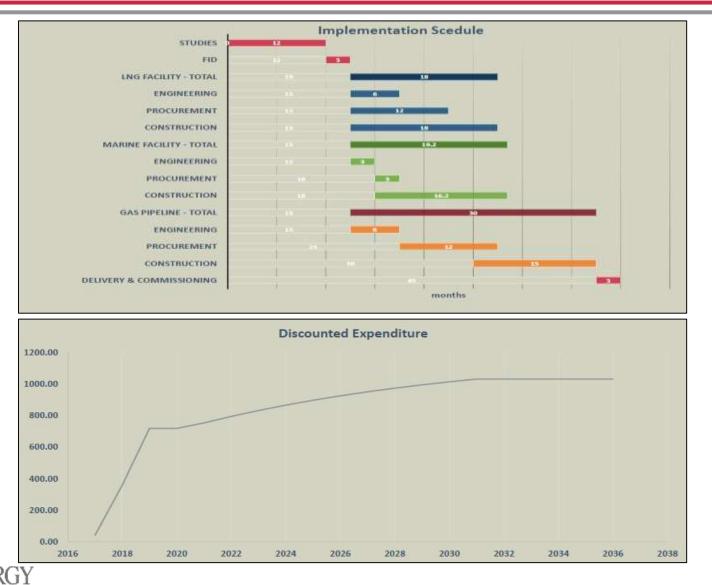
- Any near shore solution based on a jetty.
- Mid water depth option is possible but significant additional dredging required so no advantage.
- Jetty moored FSRU is most flexible option with a short delivery timescale.
- Onshore terminal should be considered if LNG supply is for longer than 10 years or high levels of security of supply are required.

Jetty moored FSRU

FSRU Independence in Lithuania

Site 1: Results – Site 1: Kyauk Phyu Traffic light scoring

		Site 1: Kyauk Phyu													
		Site 1 A Maday Island				Site 1 B Kyauk Phyu									
		Onshore	FSRU on	Midwater	eepwater		NGRV in	GBS	Onshore	FSRU on	Midwater			NGRV in	GBS
GETTING	LNG TO THE TERMINAL	terminal	Jetty	FSRU	FSRU	Jetty	eepwater		terminal	Jetty	FSRU	FSRU	Jetty	eepwater	
1	How much dredging is required to create a channel to the terminal?														
2	What Jetty length is required to be able to moor a near shore FSRU/LNG Carrier?														
OR	What Subsea pipeline length is required to connect a midwater or deepwater FSRU or LNGRV?														
3	How much marine traffic is currently being experienced?														
4	Are there local visibility limitations?														
5	Are there any other factors that limit the site?														
STORING	LNG														
1	What is the wave environment like?														
2	How variable is the wind/wave environment?														
3	Might the LNG facility be impacted by extreme weather?														
4	Will the site cause any destruction or exclusion to environmentally sensitive areas?														
5	Will the site cause any destruction or exclusion to culturally and historically sensitive areas?														
6	Will the site development and operation impact the local community in any detrimental way?														
7	Will the site development and operation increase the risk of harm/fatality to the local community?														
8	Are there risks to the LNG facility from geological events?														
GETTING	GAS TO MARKET														
1	Can LNG be vaporised in sufficient volume and in an environmentally acceptable way?														
2	What is the onshore pipeline length?														
3	What is the difficulty in laying the onshore pipeline?														
4	What is the offshore pipeline length?														
5	What is the difficulty in laying the offshore pipeline?														
LOCAL IN	RASTRUCTURE Is there sufficient towage available to berth the LNG carrier?														
2	Is there currently any port rules and infrastructure														
3	appropriate to hydrocarbon importation at the proposed LNG Is there sufficient infrastructure to accommodate workers and their families, expatriates and vendor personnel?														
4	and their families, expatriates and vendor personnel? Is there emergency response and Health care capability?														
5	Education and Skills?														
6	Is there access to a major port with connecting roads?														
7	Is there access to an international airport with road/rail links?														
8	How adequate is the marine infrastructure?														



Site 1: Results – Summary data inputs for the analysis for Site 1A2

PHYSICAL PARA	METRS:	Data					
LNG facility size		170,000 m ³ stored with 500 mmscfd vaporiser					
		capacity					
LNG facility type	e	FSRU					
Location		Nearshore					
Ownership		Lease					
geology		<0.4 g acceleration					
Jetty length		200 m					
Breakwater		Not required					
Dredging		2,000,000 m ³					
Gas pipeline		5 km of 30 inch offshore + 557 km of 30 inch					
		onshore					
Design LNG ship)	163,000 m ³					
FINANCIAL AND	D ECONOMIC PARAMETERS:	Data					
Project start year	ar	2017					
LNG import terr	n	10 years					
Discount rate		10%					
Lease rate		140,000 US\$/day					
Fuel oil cost		470 US\$/ton 380 cs Singapore					
Electricity cost		0.05 US\$/kWh (70 kyats/kWh)					
Tug cost		US\$ 15,000/day each (no mobilisation costs)					
CAPITAL COSTS	: Description of key areas	Value					
FSRU		0 US\$ million (lease)					
Jetty		138 US\$ million					
Dredging		10 US\$ million					
Gas pipeline		677.6 US\$ million					
Local infrastruc	ture	0 US\$ million					
TOTAL		826.03 US\$ million					
Note 1 : No BOT/BOOT purchase payment was assumed at the end of the contract life.							
OPERATING CO	STS: Description of key areas	Operating costs					
FSRU lease		51 US\$ million pa					
Fixed costs	Labour	3 US\$ million pa					
	Insurance	2 US\$ million pa					
	Inspection and maintenance	2 US\$ million pa					
	Supporting infrastructure	0 US\$ million pa					
Variable costs	Fuel oil	6.48 US\$ million pa					
	Electricity	0 US\$ million pa					
	Towage	1.6 US\$ million pa					
TOTAL		66.20 US\$ million pa					
Notes							
1. The above calculation is based on a 557km connecting pipeline to Yangon. If Site 1A2 was							
to opt for the shorter 290km onshore connection to either Pyay or Magway the CAPEX							
costs would be reduced by \$320.4 million, with an equivalent reduction in the DCF figure.							

Site 1: Results – Implementation schedule and cash flow

serving the energy industry... ©2017

Site 1: Results Summary

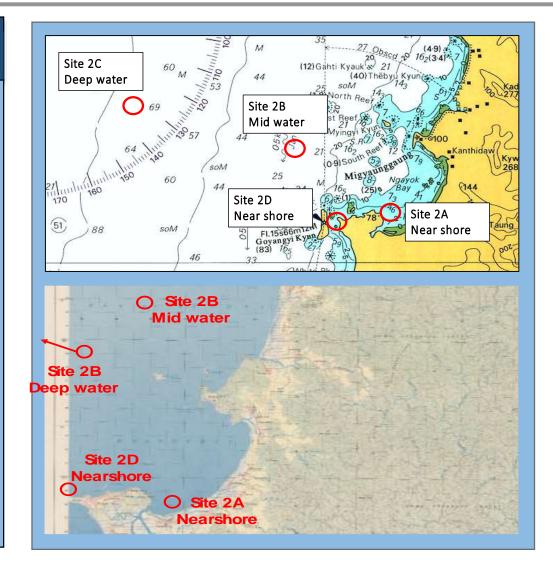
Site 1A2

Schedule to market:	48 months
≻Capital Cost:	826 US\$ million
Operating cost:	66 US\$ million/year
Discounted Expenditure	: 1032 US\$ million

≻Calculation based on 557 km pipeline to Yangon

Section 5: Site 2 Nga Yoke Kaung

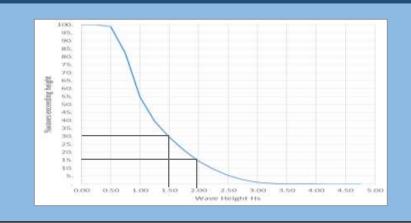
Site 2: Overview

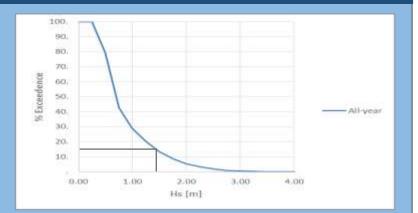

Site Locations

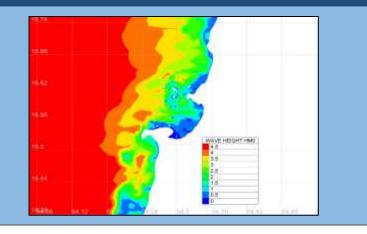
Three sites considered as follows:


- Site 2A near the shore sheltered behind the headland to the south of Ngayok Bay.
- Site 2B in 20 m of water beyond the islands to the north end of Ngayok Bay about 10 – 15 km offshore.
- Site 2C in 80 m of water 30-40 km offshore of Ngayok Bay.
- Site 2D near the shore at the southern headland about 1.0km off shore

©2017

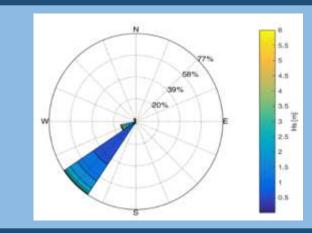

serving the energy industry ...


Site 2: Metocean analysis

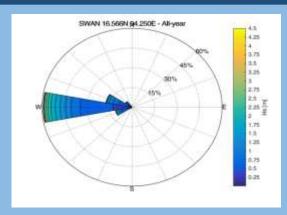

Wave height exceedance curves (Pilot station) Sites 2B and 2C

Wave height exceedance curves (Pilot station) Sites 2D

Non Cyclonic Storm



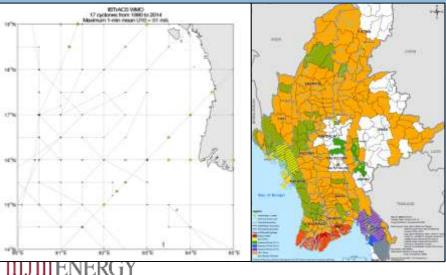
serving the energy industry... ©2017


Site 2: Metocean analysis

- All four sites are exposed to SW winds and monsoon
- Sites 2A and 2D have some shelter behind the headland
- Non cyclonic storms will impact operations at Sites 2B and 2C
- Winds are insufficient to challenge LNG carrier mooring guidelines

Wave & wind rosettes 2A,B,C

Wave & wind rosettes 2D

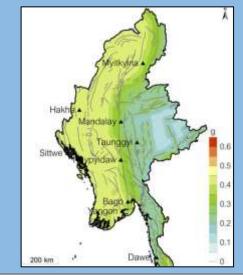


Site 2: Weather & Geology

Weather

- Cyclones are prevalent in Northern Myanmar and should be expected.
- Flooding has occurred twice since 2010.

Cyclone tracks & flooding events

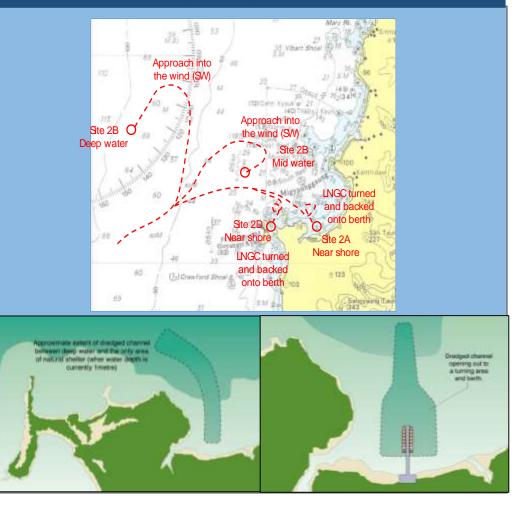

©2017

serving the energy industry ...

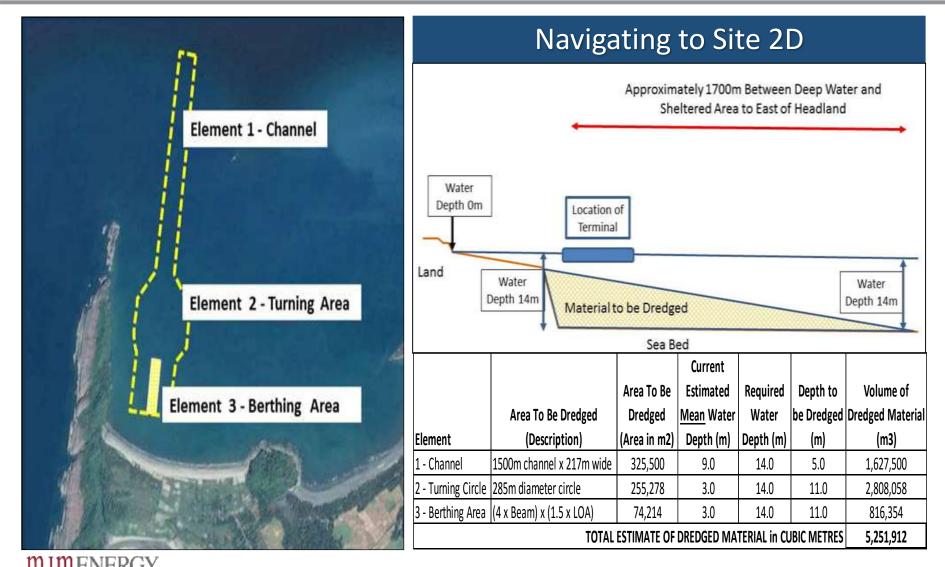
Geology

- Magnitude 3 and 4 earthquakes have occurred nearby.
- High peak ground accelerations are anticipated (0.4 – 0.45g).

Peak ground accelerations


Site 2: Navigational assessment

- Site 2A is in very shallow water (2m) and needs extensive dredging to 14 m for a LNG carrier to berth on a short jetty.
- Reducing the dredging by extending the jetty reduces and then eliminates the wave protection provided by the headland
- Offshore sites 2B and 2C are in deep water and present no navigational issues


©2017

serving the energy industry...

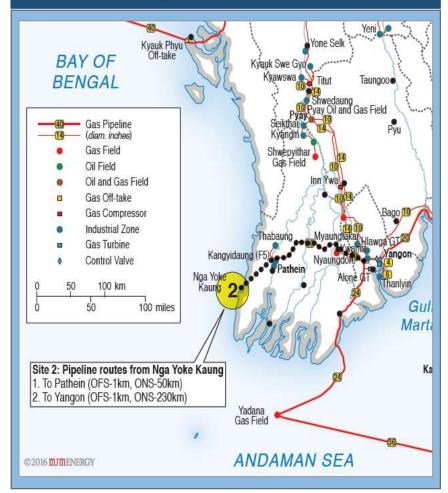
Navigating to Site 2

Site 2: Navigational assessment

Site 2: Environmental, Social & Cultural Impacts

- Coral and mangrove are definitely present. Seagrass and turtles may be present.
- Local tourist industry advertises snorkelling and diving.
- Beach resorts in the general area.
- Coal fired power plant in the bay rejected after local protests.
- Dredging would damage coral as would cold water/biocide return from vaporisation.
- Four local villages potentially impact by near shore terminal.

©2017


Environmental impact

Site 2: Pipelines

- Background Existing 10 inch pipeline to Yangon via Pathein to Thabaung is too small and low pressure for new flows.
- Option 1 Lay new 30 inch 50km pipeline in a new ROW to Pathein.
- Option 2 Lay a new 30 inch 230km pipeline via Pathein to Yangon
- No reinforcement costs required unless gas is required for proposed power plant at Shwedaung.

Pipeline route

Site 2: Local infrastructure

- No tugs, nearest tugs at Shwe oil terminal.
- No coastal port or port authority.
- Pathein is only able to provide the most basic business services.
- Little industry and relatively low skill workforce.
- Technical and IT universities in Pathein should be able to provide some skills.
- Health care present.
- Large port at Pathein for river traffic but with no significant port infrastructure.
- Poor road connections.

Pathein

serving the energy industry... ©2017

Site 2: Technology selection

Near shore site 2A too difficult environmentally

- Mid (Site 2B) or deep water (Site
 2C) options possible but challenging
- Little difference in wave environment so deep water, buoy moored, FSRU preferred as more robust in extreme weather
- Near shore site 2D is environmentally difficult
- Site has all the issues as site 2A but at smaller scale
- Challenging but possible

serving the energy industry ...

©2017

Technology selection

Callenging!

Site 2C Deep water

Site 2D Protected by headland

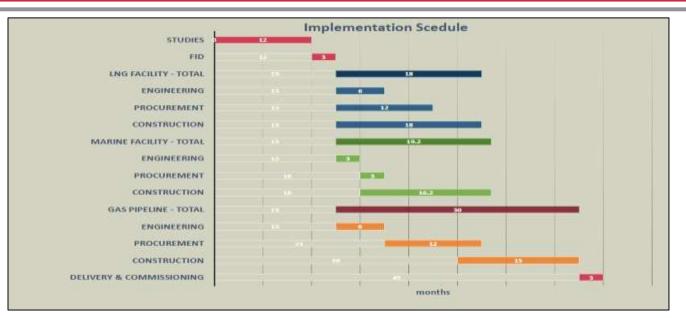
Site 2: Results – Nga Yoke Kuang traffic light scoring for 2A, B and C

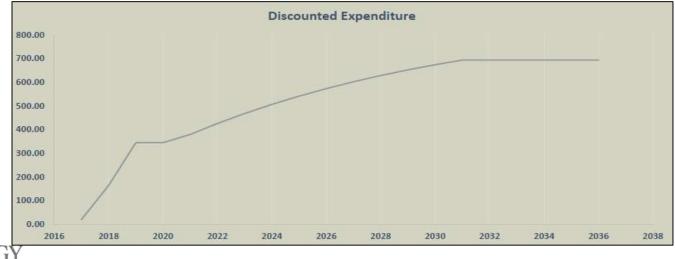
		<u> </u>		No	arshore Site	20			Offshore Sites 2B & 2C						
		Onshore	FSRU on	-	Deepwater	FSU on	LNGRV in	GBS	Onshore FSRU on Midwater Deepwater FSU on NGRV in					GBS	
		terminal	Jetty	FSRU	FSRU	Jetty	Deepwater	000	terminal	Jetty	FSRU	FSRU	Jetty	Deepwater	005
GETTING	G LNG TO THE TERMINAL														
1	How much dredging is required to create a channel to the terminal?														
2	What Jetty length is required to be able to moor a near shore FSRU/LNG Carrier?														
OR	What Subsea pipeline length is required to connect a midwater or			Not			Not								
	deepwater FSRU or LNGRV?			Possible			Possible								
3	How much marine traffic is currently being experienced?														
4	Are there local visibility limitations?														
5	Are there any other factors that limit the site?														
STORING															
1	What is the wave environment like?														
2	How variable is the wind/wave environment?														
3	Might the LNG facility be impacted by extreme weather?			Not Possible			Not Possible								
4	Will the site cause any destruction or exclusion to environmentally sensitive areas?			POSSIDIE			POSSIDIE								
5	Will the site cause any destruction or exclusion to culturally and historically sensitive areas?														
6	Will the site development and operation impact the local community in any detrimental way?														
7	Will the site development and operation increase the risk of harm/fatality to the local community?														
8	Are there risks to the LNG facility from geological events?														
GETTING	GAS TO MARKET	1			1		1				1		1		
1	Can LNG be vaporised in sufficient volume and in an environmentally acceptable way?														
2	What is the onshore pipeline length?			Not Possible			Not Possible								
3	What is the difficulty in laying the onshore pipeline?														
4	What is the offshore pipeline length?														
5	What is the difficulty in laying the offshore pipeline?														
LOCAL I	NFRASTRUCTURE														
1	Is there sufficient towage available to berth the LNG carrier?														
2	Is there currently any port rules and infrastructure appropriate to hydrocarbon importation at the proposed LNG site?														
3	Is there sufficient infrastructure to accommodate workers and their														
4	families, expatriates and vendor personnel? Is there emergency response and Health care capability?			Not			Not								
				Possible			Possible								
5	Education and Skills?														
6	Is there access to a major port with connecting roads?														
7	Is there access to an international airport with road/rail links?														
8	How adequate is the marine infrastructure?														

©2017

Site 2: Results – Nga Yoke Kuang traffic light scoring for 2D

				N	ear shore Site	4		
		Onshore FSRU on Midwater Deepwater FSU on LNGRV in						
		terminal	Jetty	FSRU	FSRU	Jetty	Deepwater	
ETTING I	ING TO THE TERMINAL	•						
1	How much dredging is required to create a channel to the terminal?							
2	What Jetty length is required to be able to moor a near shore							
	FSRU/LNG Carrier?							
OR	What Subsea pipeline length is required to connect a midwater or							
	deepwater FSRU or LNGR♥			Not possible			Not possible	
3	How much marine traffic is currently being experienced?							
4	Are there local visibility limitations?							
5	Are there any other factors that limit the site?							
ORING	LNG							
1	What is the wave environment like?							
2	How variable is the wind/wave environment?							
3	Might the LNG facility be impacted by extreme weather?			Not possible			Not possible	
4	Will the site cause any destruction or exclusion to environmentally sensitive areas?							
5	Will the site cause any destruction or exclusion to culturally and historically sensitive areas?							
6	Will the site development and operation impact the local community in							
	any detrimental way?							
7	Will the site development and operation increase the risk of harm/fatality to the local community?							
8	Are there risks to the LNG facility from geological events?							
ETTING (GAS TO MARKET			0	nshore pipelir	ne		
1	Can LNG be vaporised in sufficient volume and in an environmentally acceptable way?							
2	What is the onshore pipeline length?							
3	What is the difficulty in laying the onshore pipeline?							
4	What is the offshore pipeline length?							
5	What is the difficulty in laying the offshore pipeline?							
OCAL INF	RASTRUCTURE			• •				
1	Is there sufficient towage available to berth the LNG carrier?							
2	Is there currently any port rules and infrastructure appropriate to							
	hydrocarbon importation at the proposed LNG site?							
3	Is there sufficient infrastructure to accommodate workers and their							
	families, expatriates and vendor personnel?							
4	Is there emergency response and Health care capability?			Not possible			Not possible	
5	Education and Skills?							
6	Is there access to a major port with connecting roads?							
7	Is there access to an international airport with road/rail links?							
8	How adequate is the marine infrastructure?							




Site 2: Results – Summary data inputs for the analysis for Site 2D

PHYSICAL PARA	METDC.	Data					
LNG facility size	-	170,000 m ³ stored with 500 mmscfd vaporiser					
LING racinty size		capacity					
LNG facility type	9	FSRU					
Location	6	Nearshore					
Ownership		Lease					
geology		<0.4 g acceleration					
Jetty length		0 m					
Breakwater		Not required					
Dredging		5,200,000 m ³					
Gas pipeline		1 km of 30 inch offshore + 230 km of 30 inch					
Gas pipelille		onshore					
Design LNG ship		163,000 m ³					
·	D ECONOMIC PARAMETERS:	Data					
Project start ye		2017					
LNG import ter		10 years					
Discount rate		10%					
Lease rate		140,000 US\$/day					
Fuel oil cost		470 US\$/ton 380 cs Singapore					
Electricity cost		0.05 US\$/kWh (70 kyats/kWh)					
Tug cost		US\$ 15,000/day each (4 days mobilisation))					
	: Description of key areas	Value					
FSRU	. Description of key areas	0 US\$ million (lease)					
Jetty		46 US\$ million					
Dredging Gas pipeline		26 US\$ million 278 US\$ million					
Local infrastruc	•	0 US\$ million					
	ture	350 US\$ million					
TOTAL	r/ROOT nurshasa navmant was a	ssumed at the end of the contract life.					
	STS: Description of key areas	Operating costs					
FSRU lease	STS: Description of key areas	51 US\$ million pa					
Fixed costs	Labour	3 US\$ million pa					
Fixed costs							
	Insurance	2 US\$ million pa 2 US\$ million pa					
	Inspection and maintenance						
	Supporting infrastructure	2.2 US\$ million pa					
Variable costs	Fuel oil	6.48 US\$ million pa					
	Electricity	0 US\$ million pa					
	Тоwage	14.6 US\$ million pa					
TOTAL		81.4 US\$ million pa					
Notes							
		km connecting pipeline to Yangon. If Site 2D was					
		nection to Pathein the CAPEX costs would be					
reduced	d by \$204 million, with an equiva	ient reduction in the DCF figure.					

Site 2: Results – Implementation schedule and cash flow

Site 2D

Schedule to market:	48 months
≻Capital Cost:	350 US\$ million
Operating cost:	80 US\$ million/year
Discounted Expenditure:	682 US\$ million

>230 km pipeline to Yangon, a shorter pipeline to Pathein may be possible

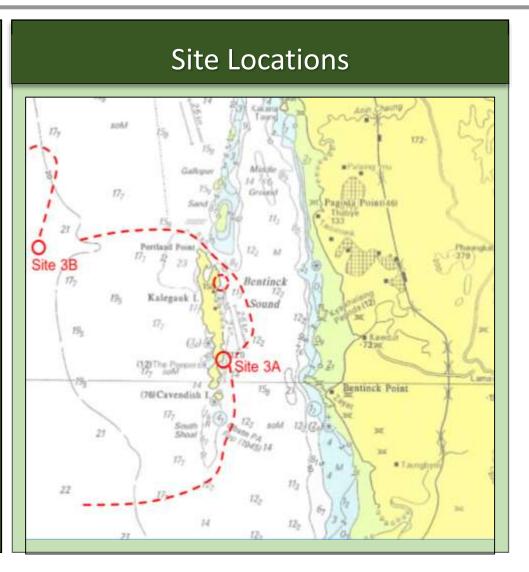
Site 2C

>Not developed – considered too challenging

Section 6: Site 3 Kalegauk Island

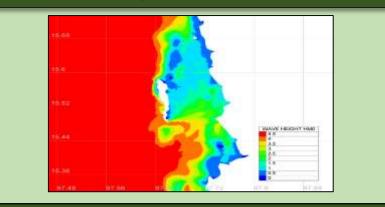
Site 3: Overview

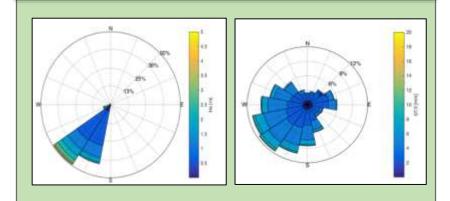
Two sites considered


Site 3A in Bentinck Sound to the east of Kalegauk Island. (NB: Two sites are possible but proximity to local populations favours the southern site – the northern site is not considered further.)

Site 3B is located offshore in 20 m of water in the Andaman Sea to the northwest of Kalegauk Island.

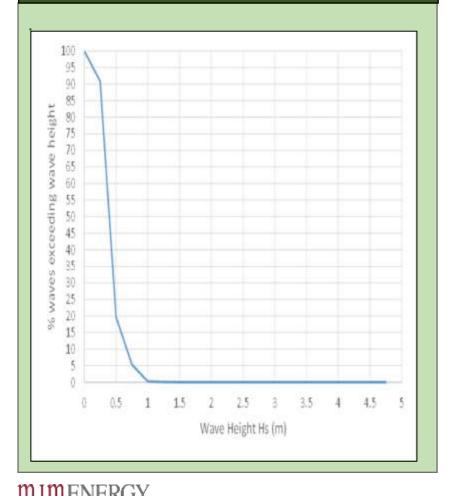
©2017

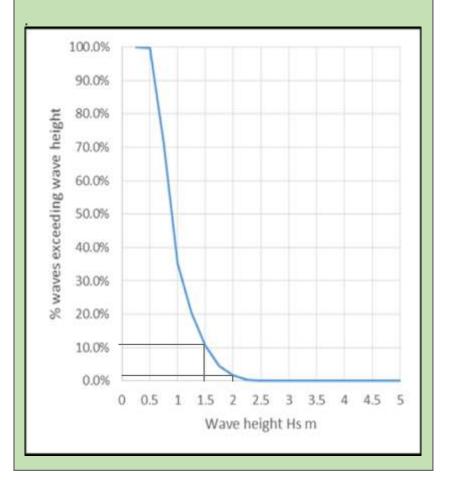

the energy industry...


Site 3: Metocean Analysis

- Both sites are relatively sheltered from SW winds and monsoon by the Andaman Islands.
- Site 3A has additional protection from Kalegauk Island.
- Non cyclonic storms will impact operations at Sites 3B but are infrequent.
- Winds are insufficient to challenge LNG carrier mooring guidelines.

Non cyclonic storm

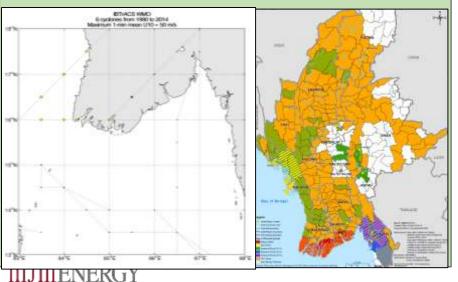

wind & wave rosettes



Site 3: Metocean Analysis

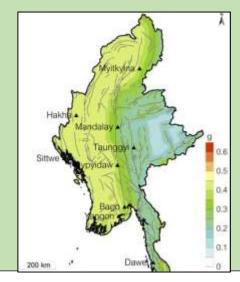
Wave height exceedance curve at berth Site 3A

Wave height exceedance curve at pilot station Site 3B



Site 3: Weather & Geology

Weather


- Cyclones are infrequent in this part of Myanmar, cyclones are deflected by the Andaman Islands.
- Flooding occurs on a seasonal basis.

Cyclone tracks & flooding events

Geology

- There have been no recorded earthquakes in the vicinity of Kalegauk Island. There have been several Magnitude 4 – 5 earthquakes in the Andaman Sea to the west.
- Moderate peak ground accelerations are anticipated (<0.2g).</p>

Peak ground accelerations

serving the energy industry... ©2017

Site 3: Navigational assessment

- Site 3A is in 12 m of water + tides.
- No dredging is required if LNG transit times are controlled to high slack water.
- A dredged berthing pocket to 14 m sufficient for a LNG carrier to escape an incident will be required.
- Offshore site 3B is in a water depth of 20 m and presents no navigational issues.

©2017

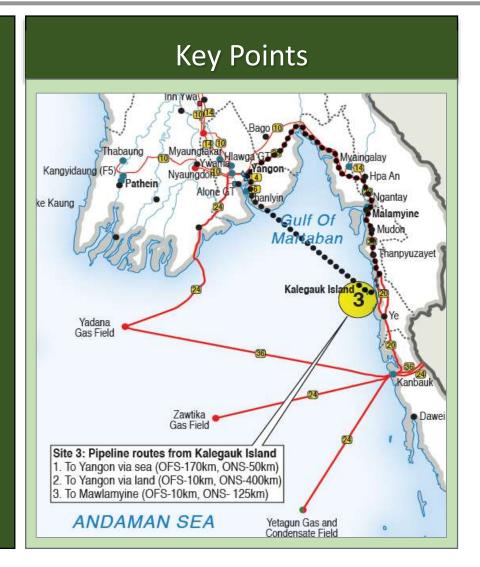
serving the energy industry...

Site 3: Environmental, Social & Cultural Impacts

- Kalegauk Island has 2 villages and 2 smaller settlements. Avoiding hazards and impacts is possible but restricts the space available.
- Fishing is important to Mon state but the muddy seabed here is probably of lower value than further south.

Key Points

"Pristine" coast but development starting Foreigners had no access until recently Some deforestation by rubber plantations



Site 3: Pipelines

- Current pipeline: Kaunbauk Yangon via power stations at Mawlamyine.
- Reinforcement is underway but slow.
- Option 1 170 km of 30 inch subsea pipeline to Yangon + 50km onshore.
- Option 2 400 km of 30 inch pipeline in ROW to Yangon + 10km offshore.
- Option 3 125 km of 30 inch pipeline to Mawlamyine + 10 km offshore.
- Key assumptions are no compression or reinforcement.

©2017

serving the energy industry ...

Site 3: Local infrastructure

- No tugs, nearest tugs at Shwe oil terminal.
- No port or port authority.
- Ye is the nearest town but is unable to provide the most basic business services.
- Little industry and relatively low skill workforce.
- Mawlamyine has higher education establishments.
- Health care at Ye is seen as poor
- Port at Mawlamyine for river traffic but with no significant port infrastructure.
- Good road & rail connections but these may be in poor condition.

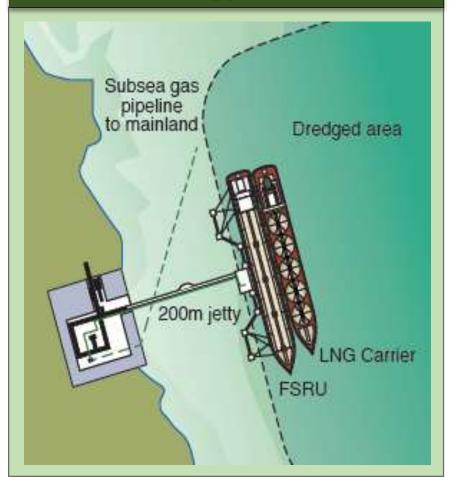
©2017

Key Points

Ye – very limited infrastructure

Site 3: Results – Kalegauk Island traffic light scoring

					ar shore Site				Offshore Site 3B						
		Onshore terminal	FSRU on Jetty	Midwater FSRU	Deepwater FSRU	FSU on Jetty	LNGRV in Deepwater	GBS	Onshore terminal	FSRU on Jetty	Midwater FSRU	Deepwater FSRU	FSU on Jetty	LNGRV in Deepwater	GBS
GETTING	LNG TO THE TERMINAL	connud	Jetty	1310	1310	Jerry	Deepwater		Cerrinidi	Jetty	15110	1310	Jelly	ocepwater	
1	How much dredging is required to create a channel to the terminal?														
2	What Jetty length is required to be able to moor a near shore FSRU/LNG Carrier?														
OR	What Subsea pipeline length is required to connect a midwater or deepw FSRU or LNGRV														
3	How much marine traffic is currently being experienced?														
4	Are there local visibility limitations?														
5	Are there any other factors that limit the site?														
STORING															
1	What is the wave environment like?														
2	How variable is the wind/wave environment?														
3	Might the LNG facility be impacted by extreme weather?														
4	Will the site cause any destruction or exclusion to environmentally sensi areas?														
5	Will the site cause any destruction or exclusion to culturally and historic sensitive areas?														
6	Will the site development and operation impact the local community in a detrimental way?														
7	Will the site development and operation increase the risk of harm/fatality the local community?														
8	Are there risks to the LNG facility from geological events?														
OFTING	GAS TO MARKET			0	shore pipe	line						ubsea pipel			
1	Can LNG be vaporised in sufficient volume and in an environmentally acceptable way?				ishore pipe	line					5	ubsea pipei	ine		
2	What is the onshore pipeline length?														
3	What is the difficulty in laying the onshore pipeline?														
4	What is the offshore pipeline length?														
5	What is the difficulty in laying the offshore pipeline?														
1000															
LOCAL IN 1	FRASTRUCTURE Is there sufficient towage available to berth the LNG carrier?														
2	Is there currently any port rules and infrastructure appropriate to hydrocarbon importation at the proposed LNG site?														
3	Is there sufficient infrastructure to accommodate workers and their famil expatriates and vendor personnel?														
4	Is there emergency response and Health care capability?														
5	Education and Skills?														
6	Is there access to a major port with connecting roads?														
7	Is there access to an international airport with road/rail links?														
8	How adequate is the marine infrastructure?														

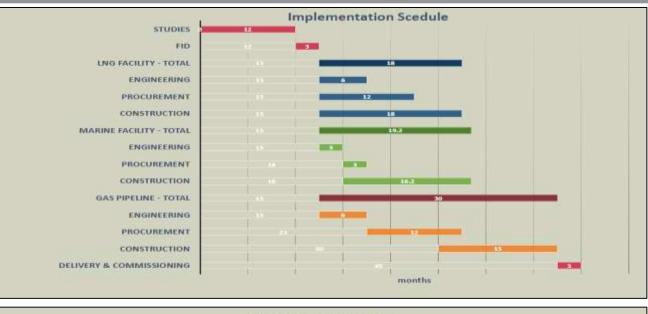


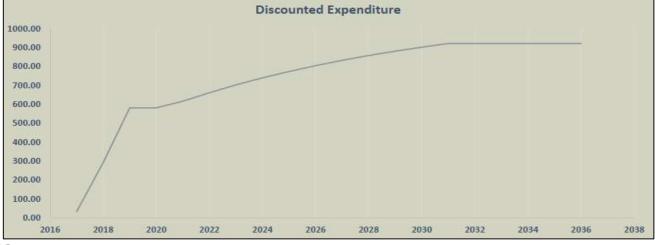
Site 3A: Technology Selection

Any near shore solution based on a jetty.

- Mid water depth option is possible but significant additional dredging required so no advantage.
- Limited space on the island away from people which will make an onshore terminal challenging but its potential cannot be ruled out at this stage.
- Jetty moored FSRU is most flexible option with a short delivery timescale.

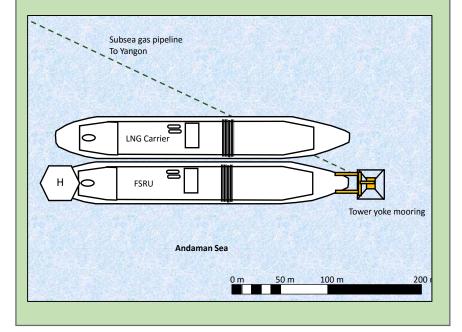
Technology selection


Site 3: Results – Summary data inputs for the analysis for Site 3A2


PHYSICAL PARA	METRS:	Data				
LNG facility size		170,000 m ³ stored with 500 mmscfd vaporiser.				
LNG facility type	3	FSRU				
Location		Nearshore				
Ownership		Lease				
geology		<0.2 g acceleration				
Jetty length		300 m				
Breakwater		Not required				
Dredging		450,000 m ³				
Gas pipeline		10 km 30 inch subsea pipeline + 400 km onshore				
Design LNG ship)	163,000 m ³				
FINANCIAL AND	ECONOMIC PARAMETERS:	Data				
Project start yea	ar	2017				
LNG import tern	n	10 years				
Discount rate		10%				
Lease rate		140,000 US\$/day				
Fuel oil cost		470 US\$/ton 380 cs Singapore				
Electricity cost		0.05 US\$/kWh (70 kyats/kWh) US\$ 15,000/day each plus 4 days mobilisation Value				
Tug cost						
CAPITAL COSTS	: Description of key areas					
FSRU		0 US\$ million (lease)				
Mooring		167 US\$ million 2.5 US\$ million 498 US\$ million				
Dredging						
Gas pipeline						
Local infrastruct	ure	0 US\$ million				
TOTAL		668 US\$ million				
Note 1: No BOT	/BOOT purchase payment was as:	sumed at the end of the contract life.				
OPERATING CO	STS: Description of key areas	Operating costs				
FSRU lease		51 US\$ million pa				
Fixed costs	Labour	3 US\$ million pa				
	Insurance	2 US\$ million pa				
	Inspection and maintenance	2 US\$ million pa				
	Supporting infrastructure	0 US\$ million pa				
Variable costs	Fuel oil	6.5 US\$ million pa				
	Electricity	0 US\$ million pa				
	Towage	14.6 US\$ million pa				
TOTAL		80.2 US\$ million pa				
Notes						
Notes						

©2017

Site 3: Results – Implementation schedule and cash flow 3A2



Site 3B: Technology Selection

Technology selection

The variability in wave direction is small so an island jetty may be possible although wave heights will marginally limit availability.

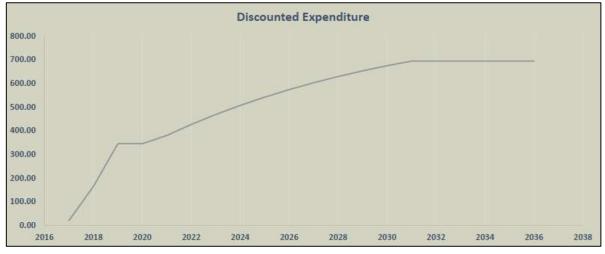
©2017

serving the energy industry...

Technology selection

Water depth is about 20 m and relatively exposed so a tower yoke mooring is preferred.

62


Site 3: Results – Summary data inputs for the analysis for Site 3B2

PHYSICAL PARA	AMETRS:	Data				
LNG facility size	2	170,000 m3 stored with 500 mmscfd vaporiser				
LNG facility type	e	FSRU				
Location		Mid water				
Ownership		Lease				
geology		<0.2 g acceleration				
Jetty length		Not required				
Breakwater		Not required				
Dredging		Not required				
Gas pipeline		170km 30 inch subsea pipeline + 50 km onshore				
Design LNG ship		163,000 m ³				
FINANCIAL AND	D ECONOMIC PARAMETERS:	Data				
Project start ye	ar	2017				
LNG import ter	m	10 years				
Discount rate		10%				
Lease rate		140,000 US\$/day				
Fuel oil cost		470 US\$/ton 380 cs Singapore				
Electricity cost		0.05 US\$/kWh (70 kyats/kWh)				
Tug cost		US\$ 15,000/day each plus 2 days mobilisation				
CAPITAL COSTS	: Description of key areas	Value				
FSRU		0 US\$ million (leased)				
Mooring		31 US\$ million				
Dredging		0 US\$ million				
Gas pipeline		366 US\$ million				
Local infrastruc	ture	0 US\$ million				
TOTAL		397 US\$ million				
Note 1 : No BO	Г/BOOT purchase payment was as	ssumed at the end of the contract life.				
OPERATING CO	STS: Description of key areas	Operating costs				
FSRU lease		51 US\$ million pa				
Fixed costs	Labour	3 US\$ million pa				
Insurance		2 US\$ million pa				
Inspection and maintenance		2 US\$ million pa				
	Supporting infrastructure	2.2 US\$ million pa				
Variable costs	Fuel oil	6.48 US\$ million pa				
	Electricity	0 US\$ million pa				
	Towage	14.5 US\$ million pa				
POTAL		81.4 US\$ million pa				

Site 3: Results – Implementation schedule and cash flow 3B2

Site 3A2

- Schedule to market: 48 months
 Capital Cost: 668 US\$ million
 Operating cost: 80 US\$ million/year
 Discounted Expenditure: 948 US\$ million
- 400 km onshore pipeline to Yangon, a shorter pipeline to Mawlamyine may be possible

Site 3B2

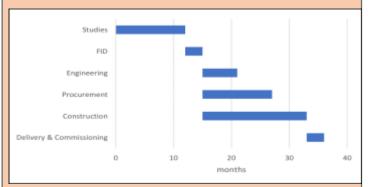
Schedule to market: 48 months
Capital Cost: 397 US\$ million
Operating cost: 81 US\$ million/year
Discounted Expenditure: 720 US\$ million

▶170 km subsea pipeline connecting to 50 km onshore pipeline

Section 7: Conclusions and Recommendations

Conclusions - Schedule

All sites similar in terms of schedule➢ LNG supply possible in 3-4 years includes

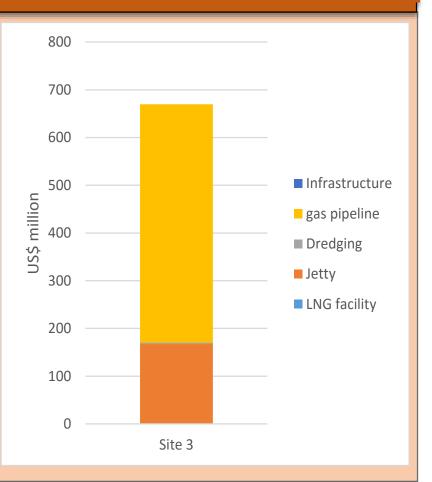

- 1 year of studies, permitting and financing.
- 2-3 years of engineering, procurement and construction.

Engineering, procurement & construction FSRU Marine jetty/dredging 18 - 24 months

- Gas pipeline 24 30 months
- Schedule should coincide with newbuild FSRU current under consideration coming to market

Schedule

FSRU/LNG is not the rate determining step


Conclusions – Capital Investment

- The FSRU is presumed to be on a leased basis
- Capital investment required for
 Marine facilities

 (May include in FSRU package)
 Gas pipelines
- Operating costs are anticipated to be US\$ 60 - 80 million pa including the FSRU lease
- US\$ 140,000 per day assumed for lease (US\$ 51 million pa)

©2017

Conclusions – DCF numbers

- To compare capital costs with operating costs over the lifetime of the LNG lease/import contract a NPV model has been used
- As no LNG price/sales income estimates are part of the scope of work a view can only be taken of discounted expenditure

Cash flow model

Site	Schedule	Capital Investment	Operating Expense	Discounted Expenditure
Site 1A2	48 months	826 US\$ million	66 US\$ million pa	1,032 US\$ million
for the shorter 290	ion is based on a 55 0km onshore connec million, with an equ	tion to either Pyay o	r Magway the CAPE	
-			-	
Site 2D	48 months	350 US\$ million	80.3 US\$ million pa	682 US\$ million
Site 3A2	uivalent reduction ir 48 months	668 US\$ million	80.2 US\$ million pa	948 US\$ million
with the onshore p	on is based on a gas p ipeline stopping at Ma ound \$330million wou	awlamyine only 125kr		
Site 3B2	48 months	397 US\$ million	81.4 US\$ million pa	720 US\$ million
No comments.				

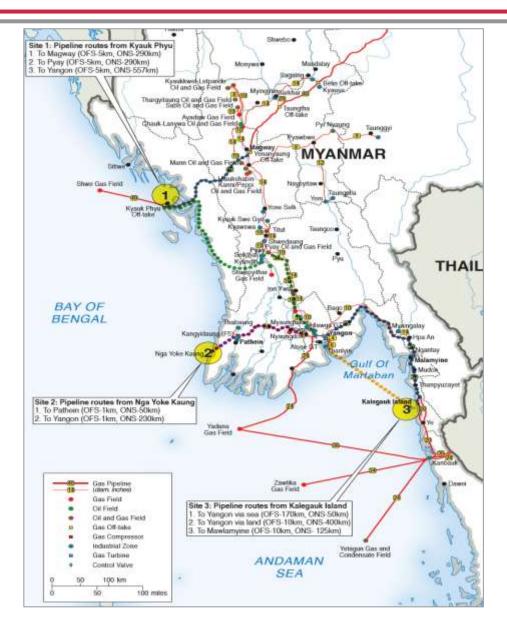
Schedules and costs (+/-50%) for each site examined are shown in the table

Notes: Site 1A new pipeline from Magway to Yangon (via Shwe) or direct to Yangon Site 2C has a relatively low metocean availability of 85% Site 2D needs to find a solution to getting a subsea pipeline past coral Site 3A could use a subsea pipeline direct to Yangon which improves economics

Conclusions – Site selection

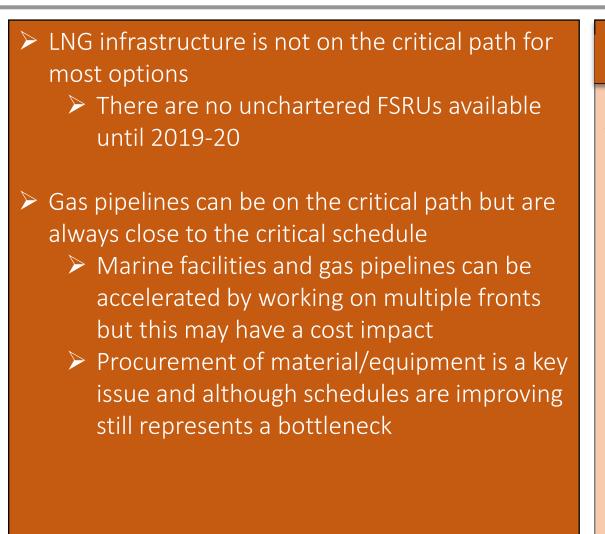
Four sites were shortlisted and examined in more detail.

- Site 1A looks a good site but pipeline is long.
- Site 2D In the cheapest route to Yangon but there may be environmental concerns and delays.
- Site 3A looks the best marine site but an onshore pipeline route to Yangon is long.
- Site 3B is a compromise with the subsea pipeline option across the Gulf of Martaban looking promising.


©2017

serving the energy industry ...

Site options


Site selection conclusions

Schedule Conclusions

©2017

Key Points

Permitting and financing will take longer than engineering pre FID

73

Cost Conclusions

All options use a FSRU

- This is assumed to leased for a period (10 years)
- There is no capital expenditure associated with the FSRU
- All capital expenditure is for onshore/shoreline facilities
 - Pipeline expenditure dominates capital investment
- Operating costs are dominated by fuel/electricity

©2017

Towage costs will be high if tugs need to travel some distance to the LNG facility

Lease rates

Lease rates become significant over the charter lifetime.

A rate of US\$ 140,000/day has been used.

This is the upper end of the current range but FSRUs are in short supply so rates may rise further

Future work

More detailed work will be required in the following areas.

The site location including;

- Bathymetric and topological surveys.
- Calibrated metocean assessments preferably using measured wave data.
- Environmental and social studies.
- LNG supply strategy
 - MOGE need to have a clear understanding of how much LNG volume is to be imported at what rate and over what period.
- FSRU design and availability
 - A detailed design feasibility study for the FSRU.
- Onshore gas transportation
 - A detailed design feasibility for the offshore and onshore pipelines taking into account road and river crossing, difficulty of terrain and local system reinforcment costs.

The limits of this study

Ideally the Consultants would have preferred to have met with the marine authorities and visited the proposed sites.

The pipeline costs are based on broad \$million /km no allowance has been made for difficult terrain or road and river crossings.

Future work

- This study is based on piping gas to Yangon for power
 Alternative option would be to produce electricity more locally and transmit by wires
- Site 1 could use the Shwe pipeline to Mingian for a northern power hub
- Site 2 would continue to pipe gas to Yangon for power generation
- Site 3 could be piped to Mawlamyine for a southern power hub
- Economics of Sites 1 and 3 would be improved

A future study should consist of the following

Compare energy transmission by wire compared to energy delivery by pipe

Thank you

Any questions?

Mike Madden, MJM Energy Ltd Mike@mjmenergy.com

David Haynes, Penguin Energy Consultants Ltd penguinenergyconsultants@gmail.com

Mike Madden Email: Mike@MJMEnergy.com

David Haynes Email: penguinenergyconsultants@gmail.com

William Derbyshire Email: william.derbyshire@eca-uk.com

MJMEnergy Ltd

www.mjmenergy.com

©2017

