
MICRO-HYDROPOWER DESIGN AIDS MANUAL

Kathmandu, October 2005

Pushpa Chitrakar

Small	Hydropower	Promotion	Mini-Grid	Support	Programme
Project	(SHPP/GTZ)		(MGSP/AE	PC-ESAP)	_

TABLE OF CONTENTS

			Page No.
TAE	BLE OF	CONTENTS	I
NOT	FICE		1
PRE	FACE		1
1.	INTF	RODUCTION	1
	1.1	GENERAL	1
	1.2	OBJECTIVES OF THE DESIGN AIDS	1
	1.3	SOURCES OF THE DESIGN AIDS	2
	1.4	DESIGN AIDS: TYPICAL DRAWINGS	2
	1.5	 DESIGN AIDS: SPREADSHEETS 1.5.1 Flow chart notations 1.5.2 Iterative Processes 1.5.3 Macro Security 1.5.4 Individual vs. linked spreadsheets 1.5.5 User specific inputs 1.5.6 Interpolated computations 1.5.7 Errors 1.5.8 Cell notes 1.5.9 Cell Text Conventions 1.5.10 Types of input values 1.5.11 Pull Down menus and data validation 	4 4 5 6 6 6 6 7 7 9 10
2	DISC		11
3	HYD	ROLOGY	14
	3.1	GENERAL	14
	3.2	HYDROLOGICAL DATA	14
	3.3	MEDIUM IRRIGATION PROJECT (MIP) METHOD	15
	3.4	WECS/DHM (HYDEST) METHOD 3.4.1 Flood Flows:	17 17
	3.5	AEPC MGSP/ESAP GUIDELINES & STANDARDS	18
	3.6	PROGRAM BRIEFING & EXAMPLES	19
4	HEA	DWORKS	23
	4.1	INTRODUCTION AND DEFINITIONS	23
	4.2	AEPC MGSP/ESAP GUIDELINES AND STANDARDS 4.2.1 Weir 4.2.2 Intake	24 24 24
		4.2.3 Intake Trashrack	24

	4.3	PROGRAM BRIEFINGS AND EXAMPLES	24
5	HEAD	DRACE/TAILRACE	34
	5.1	GENERAL	34
	5.2	AEPC MGSP/ESAP GUIDELINES AND STANDARDS	34
		5.2.1 Canal 5.2.2 Pipe	34 34
	5.3	PROGRAM BRIEFING AND EXAMPLES	34
	0.0	5.3.1 Canal	34
		5.3.2 Canal	35 39
		5.3.3 Pipe	39
6	SETT	LING BASINS	42
	6.1	GENERAL	42
		6.1.1 Sediment Settling Basins	42
	6.2	SETTLING BASIN THEORY	43
	6.3	AEPC MGSP/ESAP GUIDELINES AND STANDARDS S 6.3.1 Gravel Trap	43 43
		6.3.2 Settling Basin	44
		6.3.3 Forebay	44
	6.4	PROGRAM BRIEFING AND EXAMPLES	45
		6.4.1 Features of the spreadsheet 6.4.2 Vertical flushing pipe	45 46
		6.4.3 Spillway at intake	46
		6.4.4 Gate	46
7	PENS	STOCK AND POWER CALCULATIONS	51
	7.1	GENERAL	51
	7.2	AEPC MGSP/ESAP GUIDELINES AND STANDARDS	51
	7.3	PROGRAM BRIEFING AND EXAMPLE	51
		7.3.1 Program Briefing 7.3.2 Typical example of a penstock pipe	51 52
			02
8	TURE	BINE SELECTION	55
	8.1	GENERAL	55
	8.2	AEPC MGSP/ESAP GUIDELINES AND STANDARDS	55
	8.3	PROGRAM BRIEFING AND EXAMPLE	56
9	ELEC	CTRICAL EQUIPMENT SELECTION	57
	9.1	GENERAL	57
	9.2	SELECTION OF GENERATOR SIZE AND TYPE	57
		9.2.1 Single Phase versus Three Phase System	57
	0.0	9.2.2 Induction versus Synchronous Generators	57
	9.3	AEPC MGSP/ESAP GUIDELINES AND STANDARDS 9.3.1 Sizing and RPM of a Synchronous Generator:	58 58
		9.3.2 Sizing and RPM of an Induction Generator:	59

	9.4	PROG 9.4.1 9.4.2 9.4.3		59 59 60 62
10	TRAN	ISMISS	SION AND DISTRIBUTION	64
	10.1	INTRO	DDUCTION AND DEFINITIONS	64
	10.2	AEPC	MGSP/ESAP GUIDELINES AND STANDARDS	64
	10.3		RAM BRIEFING AND EXAMPLES Program Briefing	64 64
11		S ANE	D BENEFITS	68
	11.1	GENE	RAL	68
	11.2	AEPC	MGSP/ESAP GUIDELINES AND STANDARDS	68
	11.3		RAM BRIEFING AND EXAMPLE Program Briefing	68 68
12	COST	ING A	ND FINANCIAL ANALYSES	71
	12.1	INTRO	DDUCTION AND DEFINITIONS	71
	12.2	AEPC	MGSP/ESAP GUIDELINES AND STANDARDS	71
	12.3		RAM BRIEFING AND EXAMPLE Program Briefing	71 71
			Typical example of costing and financial analyses	72
13	UTILI	TIES		73
	13.1	-	DDUCTION	73
			Uniform depth of a rectangular or trapezoidal canal Payment of loan for different periods such as monthly, quarter	73 arly
		and ye	•	73
			Power calculations	73
			Spillway sizing. Voltage drops of transmission line.	74 74
			Pipe friction factor.	74
14	REFE	RENC	ES	75
APPE	NDICE	S		I
_	of fig			
			I Gravel Trap Drawing process	
			on of iteration (Tools => Option =>Calculations	
Figure	9 1.4: E	nabling	g macros and macro security	6
			nula incorporated in a cell note. hte presenting typical values of Manning's n for different surfa	
			ote presenting typical values of Manning's n for different surra	
Figure	e 1.8: D	ifferent	t categories of inputs	9
Figure	9 1.9: D	ifferent	t categories of inputs	10

Figure 2.1: Discharge calculations by salt dilution method	
Figure 3.1: Hydrology	
Figure 3.2: Hydrological Data and MHP	
Figure 3.3: MIP Regions	
Figure 3.4: MIP model	
Figure 3.5: Need of interpolation for calculating mean monthly coefficient	
Figure 3.6: Effect of interpolation on mean monthly flows	
Figure 3.7: Hydest Model	18
Figure 3.8: Flow chart of Hydrology spreadsheet	19
Figure 3.9: Typical example of a hydrological parameters calculation spreadsheet	
"Hydrology"	
Figure 4.1: Trashrack parameters	25
Figure 4.2: Flow chart for trashrack calculations	25
Figure 4.3: Side intake parameters	26
Figure 4.4: Flow chart for side intake calculations	
Figure 4.5: An example of side intake calculations	29
Figure 4.6: Parameters and flow chart of drop intake design	30
Figure 4.7: An example of drop intake	32
Figure 5.1: Flow chart for canal design	36
Figure 5.2: An example of canal design.	38
Figure 5.3: Illustrated canal type and their dimensions.	38
Figure 5.4: Flow chart for pipe design	
Figure 5.5: An example of pipe design	
Figure 6.1: Typical section of a settling basin	
Figure 6.2: An ideal setting basin	
Figure 6.3: Flushing pipe details	
Figure 6.4: Typical example of a settling basin (Settling basin, spilling and flushing).	
Figure 6.5: Typical example of a settling basin (Gate and rating curve).	
Figure 6.6: Typical example of a settling basin (forebay and dimensioning).	
Figure 7.1: Flow diagram of penstock design	
Figure 7.2: Input required for penstock and power calculations	
Figure 7.3: Output of penstock and power calculation spreadsheet	
Figure 8.1: A Pelton and a Crossflow Turbines	
Figure 8.2: A Typical turbine example.	
Figure 9.1: Electrical components of a 20kW 3-phase synchronous generator	
Figure 9.2: Electrical components of a 20kW 1-phase induction generator.	
Figure 10.1: Flow chart of transmission and distribution line computation.	
Figure 10.2: Transmission line and load used for the example.	
Figure 10.3: Typical example of a low voltage transmission line.	
Figure 11.1: Flow chart of the load and benefits calculation spreadsheet.	
Figure 11.2: An example of load and benefits calculation.	
Figure 11.3: Load duration curve	
Figure 12.1: Flow chart for Project costing and financial analyses.	
Figure 12.2: A typical example of project costing and financial analyses.	
Figure 13.1: A typical example of uniform depth calculation of a trapezoidal section .	
Figure 13.2: A typical example EMI calculation	
Figure 13.3: A typical example of power calculation	
Figure 13.4: A typical example of spillway sizing	
Figure 13.5: A typical example of transmission line calculation	
Figure 13.6: A typical example of pipe friction calculation	
	(

LIST OF TABLES	
Table 1.1: Summary of Drawings	3
Table 1.2: Summary of Spreadsheets	4
Table 2.1: Input parameters for Salt Dilution Method	

Table 2.2: First set conductivity reading for Salt Dilution Method (Example)	11
Table 3.1: MIP regional monthly coefficients	15
Table 3.2: Standard normal variants for floods	18
Table 4.1: Drop intake and upstream flow	30
Table 6.1: Settling diameter, trap efficiency and gross head	
Table 7.1: Summary of penstock thickness and corresponding static head	54
Table 8.1: Turbine specifications	55
Table 8.2: Turbine type vs. n _s	55
Table 9.1: Selection of Generator Type	
Table 9.2: Generator rating factors	

LIST OF DRAWINGS

Drawing Name	Page
01 General Layout	 ii
02A Side Intake Plan	 iii
02B Side Intake Sections	
03 Drop Intake Plan	
04 Headrace	 vi
05A Gravel Trap	 vii
05B Settling Basin	 viii
06 Headrace Canal	 ix
07 Forebay	
08 Penstock Alignment	 xi
09 Anchor & Saddle Blocks	
10 Powerhouse	 xiii
11 Machine foundation	
12 Transmission	
13 Single line diagram	 xvi

NOTICE

These micro-hydropower Design Aids have been prepared to provide a basis for consultants to undertake calculations and prepare drawings as per the requirements set aside by Alternative Energy promotion Centre (AEPC) of His Majesty's Government of Nepal (HMG/N). It is expected that the use of these Design Aids will result in a standard approach to carrying out calculations and drawing on Peltric feasibility studies and preliminary and feasibility studies of micro-hydro projects.

This manual and any examples contained herein are provided "as is" and are subject to change without notice. Small Hydropower Promotion Project (SHPP/GTZ) and Mini-Grid Support Programme (MGSP/AEPC-ESAP) shall not be liable for any errors or for incidental or consequential damages in connection with the furnishing, performance, or use of this manual or the examples herein.

© Small Hydropower Promotion Project (SHPP/GTZ) and Mini-Grid Support Programme (MGSP/AEPC-ESAP). All rights reserved.

All rights are reserved to the programs and drawings that are included in the MHP Design Aids. Reproduction, adaptation or translation of those programs and drawings without prior written permission of SHPP/GTZ and MGSP/AEPC-ESAP is also prohibited.

Permission is granted to any individual or institution to use, copy, or redistribute the MHP Design Aids so long as it is not sold for profit, provided this copyright notice is retained.

CONTACT & ACCESS	CONTACT & ACCESS
Small Hydropower Promotion Project /GTZ	Mini-Grid Support Programme/AEPC-ESAP
PO Box: 1457,	PO Box:
KSK Building,	Dhobichaur,
Lalitpur, Nepal	Lalitpur, Nepal
Tel: 977 1 546701/546702	Tel: 977 1 5528335/5539237
Fax: 977 1 546703	Fax: 977 1 5539392
E-mail: <u>shp@gtz.org.np</u>	E-mail: energy@aepc.wlink.com.np
www.entec.com.np	www.aepcnepal.org

PREFACE

Thanks for using this Micro-hydropower Design Aids. Micro-hydropower Design Aids is a complete set of tools consisting of typical AutoCad drawings, typical Microsoft Excel spreadsheets and a users' manual recommended for using up to feasibility study level of micro-hydropower schemes up to 100kW. It is expected that the use of these Design Aids helps enhancing micro-hydropower sector of Nepal to a new level.

Why I Prepared the Design Aids

I approached this project with one goal in mind. To write an ultimate Micro-hydropower Design Aids that would appeal to all Nepali micro-hydropower stakeholders for hydropower sector development. That is a fairly ambitious goal. But based on the feedback I received from all the stakeholders (including my colleagues working with me) from the commencement of its preparation during SHPP-AEPC collaboration 2002-2004 to date, I think I have accomplished it.

I have been using spreadsheets for more than one and half decades and spent a lot of time designing a number of technical and financial spreadsheets. I started using Lotus 123 and Quatro in my initial career. Microsoft Excel is the present market leader, by a long shot, and it is truly the best spreadsheet available. Excel lets you do things with formulas and macros (Visual Basic for Application) that are impossible with other spreadsheets.

I have been using AutoCad since 1990 when I started my career as an Engineer in Butwal Power Company Limited. Autodesk AutoCad has been the best and suitable tool for creating digital drawings.

Although the above mentioned software are popular amongst all the micro-hydropower stakeholders, it is a safe bet that only about five percent of Excel and AutoCad users in Nepali micro-hydropower sector really understand how to get the most out of these software. With the help of these Design Aids, I attempt to illustrate the fascinating features of these software and nudge you into that elite group.

I have noticed that there are numerous independent technical tools and books related to microhydropower available in the market. A single set of tools for all calculations is not available at all. Moreover, the outcome of most of these tools are not adequately tested and verified. Most of the good software have no or only poorly illustrated manuals. The combined outcome may produce poor quality feasibility studies which lead to improper implementation decision. To overcome these ominous danger, I have prepared this manual in Acrobat pdf format along with the software.

The latest version of Micro-hydropower Design Aids (v 2005.10) is a shareware and can be downloaded from <u>www.entec.com.np</u>. Permission is granted to any individual or institution to use, copy, or redistribute the MHP Design Aids so long as it is not sold for profit.

What You Should Know

The Design Aids are prepared for practicing technical designers who have basic knowledge of hydropower features, technical calculation skills and who are familiar with Excel and AutoCad. I attempt to ornate these Design Aids in such a way that the users will learn Excel and AutoCad almost instantaneously. I also attempt to enhance skills and knowledge of these users.

What You Should Have

To make the best use of the Design Aids, you need a copy of Microsoft Excel (XP or later), Autodesk AutoCad (2000 or later) and Adobe Acrobat Reader (5.0 of later). The latest version of a free copy of Adobe Acrobat Reader can be downloaded from <u>www.adobe.com</u>.

How These Design Aids Are Organized

There are hundreds ways to organize these Design Aids materials, but I settled on a scheme that divides them into three main parts.

Part I: Drawings

This part consists of fifteen typical drawings of typical intake to transmission line. Since they are only typical drawings, additions of drawings and the level of details may be amended to fulfil specific needs of a particular project. Special efforts were made to maintain the level of consistency, compatibility and the extent of information in the drawings. It is expected that the presented feasibility drawings by consultants are complete and appropriate for micro hydropower plants and all the concerned stakeholders should be able to understand and implement the presented content.

Part II: Spreadsheets

This part consists of fourteen typical spreadsheets covering all calculations recommended by AEPC guidelines for subsidy approval of micro-hydropower schemes. These spreadsheets provide users to estimate hydrological parameters; design civil, mechanical and electrical components and analyse financial robustness of the perspective micro hydropower schemes in Nepal.

Part III: Users' Manual

This manual in Adobe Acrobat pdf format illustrates aspects set aside by AEPC guidelines, users manual for using presented drawings and spreadsheets and introduction and step-by-step calculations covering all technical and financial calculations required for micro-hydropower schemes up to feasibility study levels.

Download and Reach Out

Preparation of the Design Aids is a continuous process. I am always interested in getting feedback on these Design Aids. Therefore, valuable suggestions and feedbacks are expected from all the stakeholders/users so that the overall quality of the micro hydro sector is enhanced. Any suggestion and feedback can directly be sent to my email <u>pushpa.chitrakar@gtz.org.np</u>.

1. INTRODUCTION

1.1 GENERAL

Micro-hydropower Design Aids is a complete set of tools consisting of typical AutoCad drawings, typical Microsoft Excel spreadsheets and a users' manual recommended for using up to feasibility study level of micro-hydropower schemes up to 100kW. Alternative Energy promotion Centre (AEPC) of His Majesty's Government of Nepal (HMG/N) has officially recommended these Design Aids for its subsidized micro-hydropower schemes in Nepal. This set of Design Aids is a part of its publication ISBN 99933-705-5-X.

Under the Small Hydropower Promotion Project (SHPP/GTZ)¹ and Mini-Grid Support Programme (MGSP/AEPC-ESAP)² collaboration 2002-2004, these micro-hydropower Design Aids were prepared to provide a basis for consultants to undertake calculations and prepare drawings as per the requirements set aside by the procedural guidelines of AEPC-HMG/N. Since most of the stakeholders are familiar with Autodesk AutoCad (2000 or later) and Microsoft Excel (XP or later) application software, the Design Aids were prepared based on these software to make them simple and user friendly. During the preparation of these Design Aids, special efforts were made so that the skills and knowledge of practicing stakeholders such as consultants, manufacturers and inspectors are further enhanced by this Design Aids.

The Design Aids consist of a set of fifteen typical drawings and fourteen typical spreadsheets covering all aspects recommended by AEPC guidelines for its subsidized micro-hydropower schemes. The Design Aids provide users to estimate hydrological parameters; design civil, mechanical and electrical components and analyse financial robustness of the perspective micro hydropower schemes in Nepal. Procedural guidelines, detailed step by step calculations of all the calculations and manual for using the presented spreadsheets are presented in this users' manual in Acrobat pdf file format. It is also expected that the stakeholders will be using the electronic version of the Design Aids. The Design Aids are distributed in template/read-only forms so that the original copy is always preserved even when the users modify them.

The Design Aids are specifically prepared for micro hydropower schemes up to 100kW. Although, there are many common approaches and features in all hydropower projects, special care should be taken while using these tools for bigger schemes if the circumstances are unavoidable. Use of typical drawings should be restricted to micro-hydropower schemes. Most of the spreadsheets can however be used for components of bigger hydropower projects as well (refer to Table 1.2).

Micro-hydropower Design Aids (v 2005.10) is a shareware and can be downloaded from <u>www.entec.com.np</u>. Permission is granted to any individual or institution to use, copy, or redistribute the MHP Design Aids so long as it is not sold for profit.

Preparation and use of the Design Aids is a continuous process. SHPP/GTZ has been continuously enhancing the Design Aids and this update (version 2005.10) is the outcome of SHPP's efforts in hydropower sector development in Nepal. Therefore, valuable suggestions and feedbacks are expected from all the stakeholders/users so that the overall quality of the micro hydro sector is enhanced. Any suggestion and feedback can directly be sent to <u>pushpa.chitrakar@qtz.org.np</u>.

1.2 OBJECTIVES OF THE DESIGN AIDS

The main objective of the Design Aids is to enhance the quality of the micro hydropower sector in Nepal. Use of these Design Aids helps fulfilling the main objective because:

¹ Small Hydropower Promotion Project is a joint project of His Majesty's Government of Nepal (HMG/N), Department of Energy Development (DoED) and German Technical Cooperation (GTZ). Since its establishment in 2000, this project has been providing its services to sustainable development of small hydropower projects in Nepal (100kW to 10MW) leading to public private participation and overall rural development. It has also been providing technical support and backstopping to Nepali micro-hydropower stakeholders including AEPC.

² Alternative Energy Promotion Centre (AEPC) is a HMG/N organization established to promote alternative sources of energy in Nepali rural areas. MGSP of AEPC-ESAP is promoting Nepali micro-hydropower schemes up to 100kW.

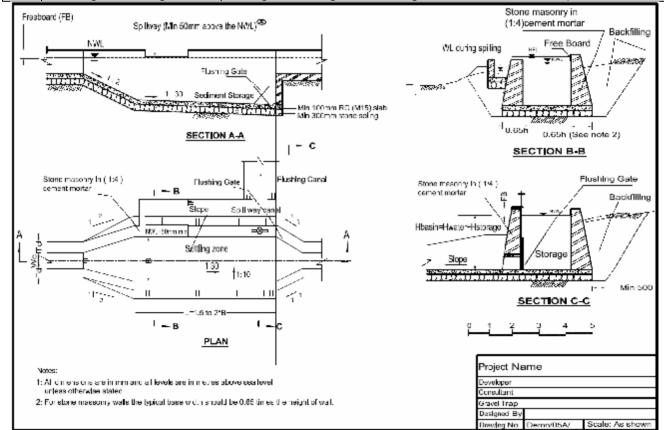
- 1. The Design Aids function as a set of "Time Saver Kit" for precision and speed (e.g. hydrological calculations based on exact flow measurement date, Q flood off-take, friction factor of penstock pipes, etc.).
- 2. They provide required relevant references for micro hydro sector stakeholders for using and upgrading their skills and creativities. Any external references that may require referring during calculations are minimised by incorporating them in the cell notes, tables, figures, etc. All detailed calculation guidelines are further documented in the Users' Manual.
- 3. The depth of the study and presented reports by different consultants are uniform and their data presentations are to the required depth.
- 4. The Design Aids serve as templates so that there are sufficient rooms for further creativity and improvement to tailor for incorporating specific needs of particular projects.
- 5. In addition, the Design Aids are handy and user friendly. The user familiar AutoCad 2000 and MS Excel XP software platforms are used to develop the Design Aids.

1.3 SOURCES OF THE DESIGN AIDS

Since the Design Aids were prepared aiming to enhance the overall quality of the micro hydro sector, the prudent documents that were available and applicable for the specific purposes, studies of different preliminary and feasibility reports of different micro hydro plants, feedbacks and suggestions from the stakeholders were based during the preparation of the Design Aids. Reviews of following sources were carried out during the preparation of the Design Aids:

- 1. Updated AEPC micro hydropower guidelines and standards for Peltric and micro-hydropower schemes.
- 2. Review, assessment and appraisal of more than 300 preliminary feasibility, 200 feasibility and 50 Peltric set feasibility study reports during the SHPP/GTZ-AEPC collaboration.
- 3. Feedbacks from all stakeholders such as SHPP/GTZ-AEPC collaboration members, Reviewers, Consultants, Developers, Manufacturers and Installers.
- 4. Experience from other micro, small and large hydropower projects within Nepal and abroad.
- 5. Standard textbooks, guidelines and other standards.

1.4 DESIGN AIDS: TYPICAL DRAWINGS


As stated earlier, fifteen AutoCad drawings were prepared and incorporated in the Design Aids. The presented drawings cover from intake to transmission line. Since they are only typical drawings, additions of drawings and the level of details may be changed to fulfil specific needs of a particular project. The level of consistency, compatibility and the extent of information in the drawings are complete and appropriate for micro hydropower plants and all the concerned stakeholders should be able to understand and implement the presented content. The main features of the presented drawings are:

- 1. These drawings are recommended only for micro-hydro schemes.
- 2. Minimum required details such as plans and adequate cross sections are provided.
- 3. Recommended values of elements such as the minimum thickness of a stone masonry wall, the longitudinal slope of a settling basin, etc, are presented in the drawings.
- 4. Standard line types and symbols are presented.
- 5. Basic drawing elements such as a title box with adequate information and controlling signatories; scale; etc are presented.
- 6. All drawings with standard layouts for a specific printer (may have to be changed as per the actual available printer).

The dimensions and geometries of the presented drawings should be amended according to the project details. A set of all the drawings are presented in the appendix. For an example, a typical drawing of a gravel trap is presented in Figure 1.1. The drawings that are presented are listed in Table 1.1.

SN	Drawing Name (*.dwg)	Remarks
1	01 General Layout	General layout of project components except the transmission and distribution components.
2	02A Side Intake Plan	A general plan of headworks including river training, trashrack, intake, gravel trap and spillway.
3	02B Side Intake Sections	A longitudinal section along water conveyance system from intake to headrace, two cross sections of weir for temporary and permanent weirs respectively and a cross section of a spillway.
4	03 Drop Intake Plan	A general plan, a cross section across a permanent weir and a cross section of a drop intake.
5	04 Headrace	A longitudinal headrace profile showing different levels along it.
6	05A Gravel Trap	A plan, a longitudinal section and two cross sections.
7	05B Settling Basin	A plan, a longitudinal section and two cross sections.
8	06 Headrace Canal	Two cross sections for permanent lined canal and one for temporary unlined canal.
9	07 Forebay	A plan, a longitudinal section, two cross sections and penstock inlet details.
10	08 Penstock Alignment	A longitudinal section of penstock alignment.
11	09 Anchor & Saddle Blocks	Plans and sections of concave and convex anchor blocks and a saddle.
12	10 Powerhouse	A plan and a section of a typical powerhouse.
13	11 Machine foundation	A plan and three sections of a typical machine foundation.
14	12 Transmission	A single line diagram if a transmission/distribution system.
15	13 Single line diagram	A single line diagram showing different electrical components.

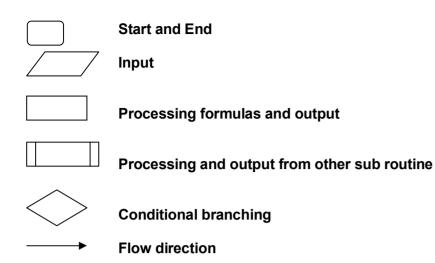
Table 1.1: Summary of Drawings

1.5 DESIGN AIDS: SPREADSHEETS

As stated earlier, MS Excel XP is used to develop the spreadsheets. General as well as special features of Excel XP are utilized while developing the spreadsheets. There are thirteen main spreadsheets each covering a tool required for covering computations for an element of hydro power schemes. The "Utility" spreadsheet presented at the end of the workbook covers minor calculations such as uniform depth of water in a canal, loan payback calculations, etc. The list of the presented spreadsheets and their areas of coverage are presented in Table 1.2.

SN	Name	Area of coverage	Uses
1	Discharge	Chapter 2: Computation of river discharge from Salt dilution method.	Micro and small
2	Hydrology	Chapter 3: Hydrological parameters calculations based on MIP and Hydest methods (Regression Methods)	Micro and small
3	Side Intake	Chapter 4: Design of side intakes including coarse trashrack, flood discharge and spillways.	All sizes
4	Bottom Intake	Chapter 4: Design of bottom intake including flood discharges.	All sizes
5	Settling Basin	Chapter 6: Design of settling basins, gravel traps and forebays with spilling and flushing systems with spillways, cones and gates.	All sizes
6	Canal	Chapter 5: Design of user defined and optimum conveyance canals with multiple profiles and sections.	All sizes
7	Pipe	Chapter 5: Design of mild steel/HDPE/PVC conveyance pipes.	All sizes
8	Penstock	Chapter 7: Design of penstocks with fine trashrack, expansion joints and power calculations.	All sizes
9	Turbine	Chapter 8: Selection of turbines based on specific speed and gearing ratios.	Micro
10	Electrical	Chapter 9: Selection of electrical equipment such as different types of generators, cable and other accessories sizing.	Micro
11	Transmission	Chapter 10: Transmission / Distribution line calculations with cable estimation.	Micro and small
12	Load Benefit	Chapter 11: Loads and benefit calculations for the first three years and after the first three years of operation.	Micro
13	Costing & Financial	Chapter 12: Costing and financial analyses based on the project cost, annual costs and benefits.	Micro
14	Utilities	Chapter 13: Utilities such as uniform depth, loan payment calculations, etc.	All sizes

Table 1.2: Summary of Spreadsheets


Since the design of anchor blocks and saddles are site and user specific and the rules of thumb are still valid for micro-hydropower schemes, anchor block calculations are not covered in these Design Aids.

The Design Aids are aimed at enhancing the quality of micro hydro schemes up to feasibility study level only; therefore, issues related to implementation such as detailed financing, manufacturing, etc., are not covered in greater details.

The spreadsheets not only speed up the computational processes with adequate level of precision but also provide adequate information (printable as well as references such as cell notes, etc). The main features of the presented spreadsheets are:

1.5.1 Flow chart notations

Standard flow chart notations are used describing the flows of programs and procedures. The following notations are mostly used:

1.5.2 Iterative Processes

The spreadsheets are prepared to save tedious and long iterative/repetitive processes during calculations. Repetitive processes are generally error generating and time consuming. A typical repetitive process is presented in Figure 1.2.

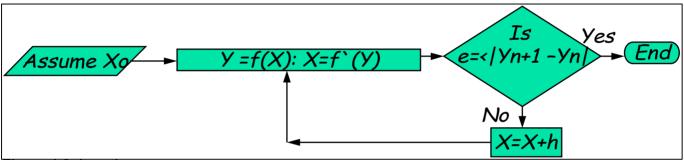


Figure 1.2: Iterative process

As shown in the figure, the initial assumed value of X_0 is amended until an acceptable error limit is reached. By default, Excel does not activate this kind of iterative process and generates Circular Reference Error. The iterative features in Excel can be activated by selecting Calculations tab (Tools->Options->Calculations>Tick Iteration (cycles & h)) and checking the iteration box. The Excel dialogue box with this features activated is presented in Figure 1.3.

Color International	Save Error Checking S	pelling Security
View Calculation	Edit General Transition Cu	stom Lists Chart
alculation		
• Automatic	C Manual	Calc <u>N</u> ow (F9)
C Automatic except <u>t</u> ables	🔽 Recalculate before save	Calc <u>S</u> heet
Iteration		
Maximum it <u>e</u> rations: 100	0 Maximum <u>c</u> hange: 0.0	001
orkbook options		
/orkbook options Update <u>r</u> emote reference	es 🔽 Save external link	values
	es 🔽 Save external link	
	· · · · · · · · · · · · · · · · · · ·	

Figure 1.3: Activation of iteration (Tools => Option => Calculations

1.5.3 Macro Security

The spreadsheets contain Visual Basic for Application (VBA) functions and procedures. Because of the safety reasons against possible virus threats, MS Excel disables such VBA functions and procedures by default. Setting security level to medium (Tools => Macros => Security => Medium) and enabling the macros during the opening of the Design Aids are required for the proper execution of the Design Aids. Dialogue boxes for setting security level to medium and enabling the macros are presented in Figure 1.4.

Microsoft Excel		2 🛛
D:\Sisne\Sisne Khola\SHP F	inancial Analyses.xls conta	ins macros,
Macros may contain viruses macros are legitimate, you		

Figure 1.4: Enabling macros and macro security

1.5.4 Individual vs. linked spreadsheets

By default, the spreadsheets are designed in such a way that they can be used as linked spreadsheets for a single project. Therefore project related common inputs such as the project name is not needed to input on every spreadsheets. Some of the other processed data such as the design discharge or flood discharge are also linked by default. However, the users may change these values for specific calculations i.e., the spreadsheets can also be used as individual spreadsheets for independent calculations. It is recommended to save an extra copy of the workbook before manipulating such linked cell so that the saved copy can be used as a workbook with linked spreadsheets for a single project.

1.5.5 User specific inputs

Some parameters such as canal freeboards, width of a canal, factor of safety for a mild steel penstock, etc., have their standard optimum values. By default, the standard optimum values are computed. However, the user may choose to enter non-standard specific values under special circumstances.

1.5.6 Interpolated computations

Some of the parameters such as the coefficient of bend, coefficient of gate discharge, etc., have standard proven values for standard conditions. However, if the user input value is not of a standard tabulated value, the interpolated values with the help of curve fitting are used for the calculation. The users are cautioned to check the validity of such values whenever they encounter them.

1.5.7 Errors

Mainly three types of errors are known. One of them is NAME# error which is caused by not executing custom functions and procedures because of the macro security level set to high or very high level. In case such an error occurs, close the workbook, activate the macro security level to medium and enable the macros when opening the workbook again. A typical NAME# error occurs adjacent to the depth of water during flushing vfi (m) and d50f during flushing (mm) in the settling basin spreadsheet.

VALUE# error is the other error that is generated by the malfunctioning of circular references. When such an error occurs, select the error cell, press F2 and press Enter. Q intake Qf cumec in the side intake spreadsheet is an example of such an error.

REF# error in transmission line computation occurs due to the deletion of unnecessary rows in a branch. In such an instance, copy the second cell from the second line of any branch.

Security Level	Trusted Sources
C High. Only s to run. Unsig	igned macros from trusted sources will be allowed gned macros are automatically disabled. u can choose whether or not to run potentially
potentially u virus scannir	commended). You are not protected from insafe macros. Use this setting only if you have ng software installed, or you are sure all you open are safe.

1.5.8 Cell notes

Adequate cell notes are provided for information explaining computational procedures, used formulas, mandatory requirement set aside by AEPC, references required for deciding proper values and criteria, etc.

For example, a cell with a cell formula for calculating specific speed of a turbine is presented in Figure 1.5. Similarly, the cell note in Figure 1.6 presents a basic table for selecting Manning's coefficient of roughness of a canal.

	A	В	С	D	E	F	
6	Turbine Selection						
	Example MHD						
	Example MHP						
	Input	4.476	Correct Laboration				
	Discharge Gross head	and the second se	Gear at turbine Gear generator	1			
	Hydraulic losses	and the second se	No of turbines/generators	2			
	Max turbine output kW		Total number of iets if Pelton n	2			
	Max thi bille ontbor was	and the second se	1				
*	Turbina/Generator mm						
	Turbine/Generator rpm	750		-			
5	Turbine/Generator rpm Output Net head m			ıla			
5	Output		Cell Formu	ıla			
1	Output		Cell Formu	ıla			
1 2 3	Output Net head m	289.989105	Cell Formu	ıla			
1234	Output Net head m No Gearing	289.969105 Pushpe Chitrake Sp Speed (no gea	Cell Formu	26			
1 2 3 4 5	Output Net head m No Gearing Sp speed of runner rpm (no gearing	289.969105 Pushpe Chitrake Sp Speed (no gea		26			
1234567	Output Net head m No Gearing Sp speed of runner rpm (no gearing Pelton (12-30) => (Ns 17-42) Turgo (Ns 20-70) => (Ns 28-99) Crossflow (Ns 20-80)	289.989105 Pushpa Chitraka Sp Speed (no gaa Peter T* Crossflow	Cell Formu	Pelton ** Crossflow			
1 2 3 4 5 6 7 8	Output Net head m No Gearing Sp speed of runner rpm (no gearing Pelton (12-30) => (Ns 17-42) Turgo (Ns 20-70) => (Ns 28-99) Crossflow (Ns 20-30) Fracis (Ns 80-400)	289.989105 Pushpa Chitraka Sp Speed (no gea Peter ** Crossflow **	Cell Formu perpertent SQRT(1.4*P kW/N tur)/Hn^(5/4) Percent 722-301 29 (NS 7422) Turgo (NS 20-70) => (NS 28-99) Crossflow (NS 20-80) Fracis (NS 80-400)	26 Pelton ** Crossflow **			
0 1 2 3 4 5 6 7 8 9	Output Net head m No Gearing Sp speed of runner rpm (no gearing Pelton (12-30) => (Ns 17-42) Turgo (Ns 20-70) => (Ns 28-99) Crossflow (Ns 20-80)	289.989105 Pushpa Chitraka Sp Speed (no gaa Peter T* Crossflow	Cell Formu	Pelton ** Crossflow			
1 0 1 2 3 4 5 6 7 8 9 0	Output Net head m No Gearing Sp speed of runner rpm (no gearing Pelton (12-30) => (Ns 17-42) Turgo (Ns 20-70) => (Ns 28-99) Crossflow (Ns 20-30) Fracis (Ns 80-400)	289.989105 Pushpa Chitraka Sp Speed (no gea Peter ** Crossflow **	Cell Formu perpertent SQRT(1.4*P kW/N tur)/Hn^(5/4) Percent 722-301 29 (NS 7422) Turgo (NS 20-70) => (NS 28-99) Crossflow (NS 20-80) Fracis (NS 80-400)	26 Pelton ** Crossflow **			
1 2 3 4 5 6 7 8 9 0 1	Output Net head m No Gearing Sp speed of runner rpm (no gearing Pelton (12-30) => (Ns 17-42) Turgo (Ns 20-70) => (Ns 28-99) Crossflow (Ns 20-30) Fracis (Ns 80-400)	289.989105 Pushpa Chitraka Sp Speed (no gea Peter ** Crossflow **	Cell Formu perpertent SQRT(1.4*P kW/N tur)/Hn^(5/4) Percent 722-301 29 (NS 7422) Turgo (NS 20-70) => (NS 28-99) Crossflow (NS 20-80) Fracis (NS 80-400)	26 Pelton ** Crossflow **			
0 1 2 3 4 5 6 7 8 9	Output Net head m No Gearing Sp speed of runner rpm (no gearing Pelton (12-30) => (Ns 17-42) Turgo (Ns 20-70) => (Ns 28-99) Crossflow (Ns 20-30) Fracis (Ns 80-400)	289.989105 Pushpa Chitraka Sp Speed (no gea Peter ** Crossflow **	Cell Formu perpertent SQRT(1.4*P kW/N tur)/Hn^(5/4) Percent 722-301 29 (NS 7422) Turgo (NS 20-70) => (NS 28-99) Crossflow (NS 20-80) Fracis (NS 80-400)	26 Pelton ** Crossflow **			

Figure 1.5: Cell formula incorporated in a cell note.

1.5.9 Cell Text Conventions

Three different colours codes are used to distinguish three different cells types. A typical example of colour coding of cells is presented in Figure 1.7. The colours and categories of these cells are:

Blue cells: These cells represent mandatory input cells. These cells are project dependant cells and project related actual inputs are expected in these cells for correct outputs. The mandatory input includes the name of project, head, discharge, etc.

Red cells: These cells are optional input cells. Standard values are presented in these cells. Values in this type of cells can be amended provided that there are adequate sufficient ground to do so. It is worth noting that care should be taken while changing these values. The optional values/ inputs include the density of sediment, sediment swelling factor, temperature of water, etc.

Black cells: The black cells represent information and or output of the computations. For the sake of protecting accidental and deliberate amendment or change leading to wrong output, these cells are protected from editing.

	nment 2 🔹 🔊					
	A	В	Formula Bar	D	E	F M N O P
3	Example MHP	ALC: NOT				
4	Stone masonry canal					
-	Incore					
6	Input	-	-			
78	Type and Name Flow (m ³ /s)			P16-P22		Call Nataa
		0.085		0.110	0.110	Cell Notes
9	Roughness coefficient (n)	-	Trapezoidal		Trapezoidal -	
10	Sectional Profile	Rectongular	0.6 ·	- Transzoidal -	Trapezoidal ·	
11	Side slope N (1V: NHorizontal)	-				Typical values of Manningis n.
12	Length of the canal (m)	130		43.5	51.7	Type of Channel Manningis n
13	1/Canal slope (s) Channel Depth/diameter D (m)	900 0.300			228	Excavated earth channels Clean 0.022
15	Freeboard FB (m)	0.200		0.200	0.300	Gravely 0.025
16	Channel Width (B) m	0.550		0.370	0.410	Weedy 0.03
17	Channel Drops di m	0.000	-	0.000	0.000	Stony, cobbles (or natural streams) 0.035 Artificially lined channels
18	Channel Drops of m Channel Drops Horizontal length hi m	0.000		0.000	0.000	Brass 0.011
19		0.720		0.600	0.600	Steel, smooth 0.012 Steel, painted 0.014
20	Desired velocity Vo (m/s)	0.720	0.000	0.000	0.000	Castinon 0.013
20						Concrete, well finished 0.012 Concrete, unfinished 0.014
-	0					Planed wood 0.012
22	Output	-				Clay tile 0.014 Brickwork 0.015
23	Side slope d (degrees)	0.000			63.435	Asphalt 0.016 Corrugated metal 0.022
A	Canal slope S	0.00200		0.00943	0.00439	Rubble masonry 0.025
24	Total depth H (m)	0.500		0.500	0.600	Stonemasorvy 0.020
24 25 26	Chainade L (m)	130,000			277.900	

Figure 1.6: A cell note presenting typical values of Manning's n for different surfaces

	erosoft Exce Ne gdit V	el - Microhydro	rmat Tools	Data Window	/ ttelp						Type a guessi	on for bein	- 0 8
0 0		Ca. 27 X 40		• (* •) •	A COLORED AND ADDRESS OF	•	Antal	- 1	• • B = 3				4.
~	24.24	- 2. 0			and the second second	and the second se	2 2 1 1			and the second se		and the second se	100
	B16 .	for the second s	LA 100 EA	1995 404 +		· pecondan		· • •	Ger In the set			u .m. 1281	5.
-	A	B	С	D	E	F	G	Н	1	E C	K	1 E	M
	and a state of the				and the second		a	11	(1)	L.	~	-	19
		g Basin De	esign by	vetters	Equatio	n			1484 2				
2	Example								0				
3	BLUE cells	are mandatory	inputs and R	ED cells are a	optional inpu	ts.		$\eta = 1 - 1$	e (E)				
				0 a . d	-								
3				Q flood	2.475				welling factor S =		1		
	-		s number M (67.000				storage ∨ (m3) =				
			ischarge O _{des}		2.250				h Hs (m) = WAsi	1.25			
\$		Flushing o	discharge Offw	$ath (m^3/s) =$	0.225		Inlet approa	ch conveyar	nce Canal/Pipe =	Pipe			
		Total di	ischarge Obae	me (m ³ /s) =	2.475		1/Bottom sli	ope of SB S	f (1:50 to 1:20) =	50.00	\Box	ΙΟι	
0		Pa	rticles to sett	le d (mm) =	0.150		Outlet approva	ch conveya	nce Canal/Pipe =	Pipe			
1		Tr	apping efficie	ncy n (%) =	0.950		V	/ater level at	inlet NVVL (m) =				
2			vater temperat		10		h flush	below the b	nase slab (L<6m)	2.00		dir	
3			ity w at 10 de		0.015				mber of basins N	1.00			1
4	5	Sediment conce			10		Spillwa		ht above MVVL m	0.05			
5			g Frequency		12				y discharge coeff		1 C		
6			/ basin Asi (495.000	10.1 × 1			reeboard h fb1 m	0.40			
8			sed density i		0.170				e (2.76 ifL <6 m) design discharge	2.76	NT	ce	
9		OUK	Cent Generally (G (Rg/miS) -1	26000		Drawidown disc	marge % ui	uesign unscharge	1.50			
0	-	Directore	perbasin G _{ba}	(m ³ /n) -	2,475		Minter e	ionth of inlat	canal hc1 (m) =	0.83			
1	hAsy as	ction width for h			7.599	~ ~			meter Bc2 (m) =	0.83			
2	INSAX ST	carola widan los n		sed B (m) =	5.000				canal hc2 (m) =	0.83	tov	/tc	
3	Inle	et canal width /o			0.825				basin Lact (m)=	0.00	LC	kts	
4				a and the design of									
5			Length of ba	sin L (m) =	99.000		Pipe does r	not need a s	traight approach				
6	10 m	A	spect ratio (4	<=AR<=15)	19.800		Head or	er outlet we	ir h overtop (m) =	0.45			
7			vlin, water de	pth Hi (m) =	2.905		Appro	oach inlet ve	locity vi1 (m/s) =				
8			nalarea / bas		14.624				locity vi2 (m/s) =	3.64			
9			verimeter / ba		10.809		1/Energy gr	radient durin	g operation So =	229183.17			
-	 H / Head 	traceCanal / He	adracePipe /	Penstock and	power) Se	ttlingBasinDe	sign / Turbine	71.1			1		
- we		Shapes • \ \									100		
dy		Calculate										NJM	
	start				eb20080emo		IntakedPP				100 4	and the second se	1

Figure 1.7: Colour coding of cell texts

1.5.10 Types of input values

Based on the nature of input, the inputs are categorised in to the following three groups:

- User or project specific input. The input variables that totally depend on the user and or the project are categorised as the user or project specific inputs. The programs do not restrict on or validate the values of such inputs. The name of the project, gross head of the projects, etc., are some of the examples that fall on this category. The crest length in the example presented in Figure 1.8 can have any value hence it is a user specific input.
- 2. Prescribed Input. Some of the inputs have some standard values. The programs suggest using such values and give choices for the user to select. However, the programs do not restrict on or validate such variables. These inputs are termed as prescribed inputs. For example in Figure 1.8, with the help of a pull-down menu, different Manning's coefficients for different types of surfaces are suggested for selection. This will greatly reduce the need for referring external references. However, any specific values for specific need can be entered into this type of cells.
- **3.** *Mandatory Input*: Some inputs can have only some specific values and the programs need to validate such values for proper computations. These values are termed as mandatory inputs. Since Nepal is divided into seven MIP regions, the MIP region value can have an integer ranging from 1 to 7 only. In the example presented in Figure 3.9, the MIP region can have values from 1 to 7, the month can have a string from January to December and the date can have an inter ranging from 1 to 31. In case the user enters different values, the program will generate errors and prompts for the correct inputs.

	osoft Excel - MHPDesignAids					
Eile	Edit View Insert Format Iools Data Window Help Adobe P			Type a questio	in for help 👻 .	_ & ×
		J% ▼ 94 +		■ Ħ ⊅ % .00 +.0 H • ▲ •	• LA 18	3 10 -
	Α	В		С	D	
27	Input		Output			
28	Trashrack coefficient kt	0 🔻				
29	Bar thickness t mm	4.00	He	adloss due to friction hf m	0.0000	
30	Clear spacing of bars b mm	75.00	He	adloss due to bends hb m	0.0000	
31	Approach velocity Vo m/s	0.75		Headloss coeff K	0.0000	
32	Angle of inclination from horizontal ϕ deg	60.00		Total headloss ht m	0.0000	
33	Flow deviation β deg	0.00		Surface area A surface m ²	0.0000	
34	Design Discharge Qd cumec	0.185		Vertical height h m	0.0000	
35	Height of trashrack bottom from river bed ht	0.00		Trashrack width B m	0.00	
36						
37	Orifice Calculations for (B = 2H or prov	rided) red	tangular can	al downstream of orific	e	
38	Input				0	
39	Orifice	241	River			1
40	Velocity coeff of orifice c	0.8 💌		Crest length L m	30.000	
41	Velocity through orifice Vo m/s	1.2		Provided Q flood m ³ /s	0.000	
42	Manning's coeff of roughness	0.02 🔻	Q flood m ³ /s (Q ₂₀ for MHP with Qd>100)	143.311	
43	Downstream submergence depth hsub m	Steel, sm		Used Q flood	143.311	
44	Orifice height H m	Cast iron		ay		
45	Height of orifice from canal bed h bot m		, well finished	est height above NWL m	0.050	
46	Provided water depth in the river hr (m)	Concrete Planed w	, unfinished	Spillway discharge coeff	1.6 💌	
47	Provided canal width (m)	Brickwor		vided Freeboard h fb1 m	0.300	
48		Rubble n				
49	N SideIntake / BottomIntake / HeadraceCanal / HeadracePipe 2	Stonema	sonry		1	I → I
· · · · · · · · · · · · · · · · · · ·		Plastered	Stone masnry	- % -		÷11
Ready	Calculate				NUM	

Figure 1.8: Different categories of inputs.

1.5.11 Pull Down menus and data validation

Some input cells are equipped with pull down menus to facilitate the users to input standard values related to the input cell. Pull down can have any user specific values than the stated standard values if the data cells are not of mandatory type. In Figure 1.8, the pull down menu for Manning's roughness coefficient (n) in cell B42 is activated. Different surface materials are listed in the pull down menu, stone masonry surface type is selected and the corresponding standard value of the Manning's coefficient of roughness of 0.02 is substituted in the corresponding cell. Since the value in this cell is not restricted, the user can enter any values for this cell.

Some inputs such as the name of the month, MIP hydrological region and dates in Hydrology spreadsheet can have specific values in their respective cells. Since the outcome of the computation will be erroneous if the input data does not match with the desired values, the spreadsheets are designed to reject such an invalid value and flag an error message with suggestions. For instance, Nepal is divided into seven MIP hydrological regions. It can have an integer value ranging from 1 to 7. If 8 is entered as a MIP region, the data is rejected and an error message along with suggestions will be flagged. This example is demonstrated in Figure 1.9.

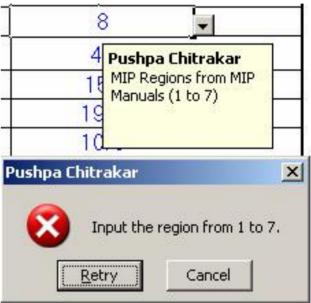


Figure 1.9: Different categories of inputs.

2 DISCHARGE MEASUREMENT

Almost all potential micro hydropower project sites in Nepal are located in remote areas where there is a complete lack of hydrological information. As per MGSP guidelines, at least one set of discharge measurement at the proposed intake site should be carried out between November and May. Bucket method for flow up to 10 l/s, weir method for a flow from 10 to 30 l/s and for flows larger than 30l/s salt dilution method (conductivity meter method) are recommended. This chapter deals with spreadsheet calculations based on the salt dilution method.

Since the salt dilution method is quick (generally less than 10minutes per set of measurement), easier to accomplish and reliable, its accuracy level is relatively higher (less than 7%), suitable for smaller fast flowing streams (up to 2000 l/s) easier for carrying in remote places, the Consultants have been using mainly this method even though AEPC guidelines have proposed different methods for different flows at the river. In this method, the change of conductivity levels of the stream due to pouring of known quantity of predefined diluted salt (50-300gm per 100l/s) are measured with a standardised conductivity meter (with known salt constant, k) at a regular interval (e.g., 5 seconds). For more information, please refer to MGSP Flow Verification Guidelines or Micro Hydro Design Manual (A Harvey).

The discharge calculation spreadsheet presented in the Design Aids can handle up to four sets of data and the individual as well as the average discharges are presented as outputs. The input parameters required for the discharge calculation are presented in Table 2.1. The typical input parameters considered in the example are presented in the adjacent column. The first set field readings are presented in Table 2.2.

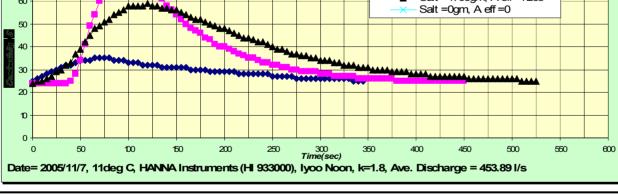
SN	Input parameters	Input for the cited (Example)
1	Project	Upper Jogmai, Ilam
2	Conductivity Meter	HANNA Instruments HI 933000
3	Date	12-Jan-04
4	Type of Salt	Iyoo Nun
5	Conductivity Constant (µ Siemens)	1.8 at 15°C
6	Water temp	15°C
7	Time Intervals (dt)	5sec
8	Weights of salt for sets 1 to 4 (M in g)	400g, 1580g and 1795g
9	Readings (μ & μ_{baseline}) for sets 1 to 4	Presented in Table 2.2

Table 2.1: Input parameters for Salt Dilution Method

Table 2.2: First set conductivity reading for Salt Dilution Method (Example)

						Time	e(sec)						
	5	10	15	20	25	30	35	40	45	50	55	60	Sum
	25	26	27	28	29	30	31	32	32	33	34	34	361
\\/otor	34	35	35	35	35	34	34	34	33	33	33	32	407
Water Conductivity in	32	32	32	31	31	31	31	31	31	30	30	30	372
μS	30	29	29	29	29	29	29	28	28	28	28	28	344
μΟ	28	28	27	27	27	27	27	26	26	26	26	26	321
	26	26	26	26	26	26	26	25	25	25			257
										Total	(μS) =	Σμ	2062
												gs (nr)	70

With these input parameters, discharge at the stream can be calculated by the following procedures:


Stream Flow, **Q = M x k/A** Where, Q = flow in litre/sec M = mass of dry salt in mg (i.e.10⁻⁶ kg) k = salt constant in (μ S)/(mg/litre) A is the area under the graph of conductivity versus time, after excluding the area due to base conductivity. The units for the area under the graph is sec x μ S. The area is determined as follows:

Area (A) = ($\Sigma\mu$ - nr x μ _{baseline}) * dt

Weighted averages of the individual flows thus calculated are computed. A typical spreadsheet with partial conductivity readings is presented in Figure 2.1. The average estimated discharge will further be used by Medium Irrigation Project Method (MIP) to calculate long term average monthly flows. The calculation procedures for the first set of measurements (Set 1) are:

Area (A) = $(\Sigma \mu - \text{ nr } x \ \mu_{\text{baseline}})^* \text{ dt}$ = $(2062-70^*25)^*5$ = 1560 sec x μ S Discharge (Q) = M x k/A = 400000^*1.8/1560 = 461.54 l/s

Discharge Measurement by Conduct	ivity Mete	r		
Spreadsheet developed by Mr. Pushpa Chitrakar, Engin	eering Advisor	, SHPP/GTZ		(
Referances: 6, 12, 13, 15, 16	Date	gæ)		
SMALL HYDROPOWER PROVOTION PROJECT/GTZ	Revision	2005.10		SHPP
Project	Upper Jo	gmai, llam		
Developer	Kankaimai	Hydropower	P Ltd	
Consultant	EPC Cons	ult		
Designed	Pushpa Ch	nitrakar		
Checked	Pushpa Ch	nitrakar		
Meter	HANNA Inst	ruments (HI 93	3000)	
Salt		Water temp:		11 sec
Given k	1.8	Time interva	ls	5 sec
	-		_	
Salt Const. (k)		1.800	-	
Wt. of Salt	400 gm		1795 gm	0 gm
Nr of data	70	_	106	0
Baseline conductivity	25		24	0
Sum of readings	2062	3433	3997	0
Effective Area	1560	6245	7265	0
Discharge	462 l/s	455 l/s	445 l/s	0 l/s
		Average	Discharge	454 l/s
Discharge Measurement by Conductivit	y Meter: Uppe	er Jogmai, Ilam	1	
70	_	— Salt =400gm, A e — Salt =1580gm, A — Salt =1795gm, A	.eff =6245	
		— Salt=1790gill, Α — Salt=0αm Δ eff:		

Field Data

Time	Reading 1	Reading 2	Reading 3	Reading 4
0	25	24	24	
5	26	24	25	
10	27	24	25	
15	28	24	26	
20	29	24	27	
25	30	24	29	
30	31	24	30	

Figure 2.1: Discharge calculations by salt dilution method

3 HYDROLOGY

3.1 GENERAL

Hydrology is the science that deals with space-time characteristics of the quantity and quality of the waters of the earth. It is the intricate relationship of water, earth and atmosphere.

Tools developed for estimating hydrological parameters for such un-gauged catchment areas are mainly

based on regional correlations. The outputs of these tools are quite comparable to the actual hydrological parameters for rivers having bigger catchment areas (100km² or more).

Almost all potential micro hydropower scheme sites in Nepal have relatively smaller catchment areas and are located in remote areas where there is a complete lack of hydrological information. MGSP guidelines require at least a set of actual measurement in dry season (November-May) for estimating comparatively reliable long term mean monthly flows. Long term mean monthly flows are estimated by the use of a regional regression methods called Medium Irrigation Project (MIP) method developed by M. Mac Donald in 1990. For micro hydropower schemes having a design discharge more than 100 l/s, flood hazards are generally critical and flood flows should be calculated. Long term mean monthly flows based on MIP method and flood flows based on 'methodologies for estimating hydrologic characteristics of engaged locations in Nepal, WECS/DHM 1990 Study (Hydest)" are incorporated in "Hydrology" spreadsheet. Brief introduction of these two methods are presented in the subsequent sub-sections.

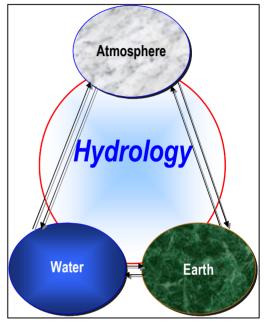


Figure 3.1: Hydrology

3.2 HYDROLOGICAL DATA

As presented in figure 3.2, the hydrological data constitute of stream flow records, precipitation and climatological data, topographical maps, groundwater data, evaporation and transpiration data, soil maps and geologic maps. Large projects may need all the hydrological data. However, only the first three data are sufficient for the estimation of MIP monthly flows and Hydest floods in micro hydropower project.

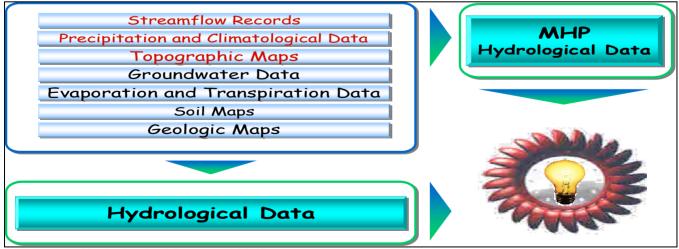


Figure 3.2: Hydrological Data and MHP

3.3 MEDIUM IRRIGATION PROJECT (MIP) METHOD

As stated earlier, this method is developed by M. Mac Donald in 1990. According to this method, Nepal is divided into 7 regions. Based on wading measurements by the Department of Hydrology and Meteorology (DHM, HMG/N), non-dimensional regional hydrographs were developed for each region. The month of April was used for non-dimensionalizing. Seven sets of average monthly coefficients for the seven regions for each month were prepared.

The seven regions are graphically shown in Figure 3.3 and the corresponding seven sets of mean monthly coefficients are presented in Table 3.1. It is worth noting that these monthly coefficients have to be interpolated to get the actual monthly coefficients if the flow measurement is not on the 15th of the month.

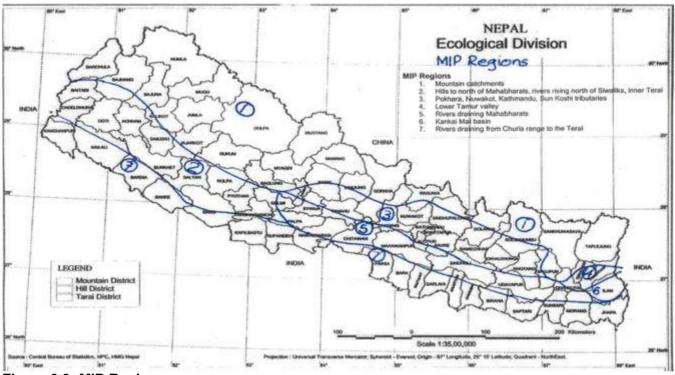


Figure 3.3: MIP Regions

Table 3.1: MIP regional monthly coefficients
--

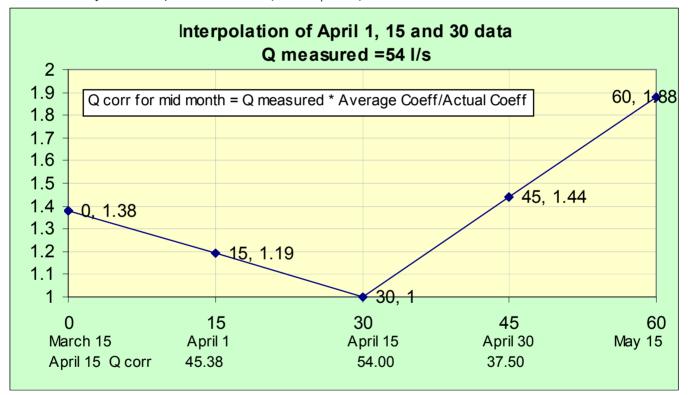

Month				Regions			
	1	2	3	4	5	6	7
January	2.40	2.24	2.71	2.59	2.42	2.03	3.30
February	1.80	1.70	1.88	1.88	1.82	1.62	2.20
March	1.30	1.33	1.38	1.38	1.36	1.27	1.40
April	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Мау	2.60	1.21	1.88	2.19	0.91	2.57	3.50
June	6.00	7.27	3.13	3.75	2.73	6.08	6.00
July	14.50	18.18	13.54	6.89	11.21	24.32	14.00
August	25.00	27.27	25.00	27.27	13.94	33.78	35.00
September	16.50	20.91	20.83	20.91	10.00	27.03	24.00
October	8.00	9.09	10.42	6.89	6.52	6.08	12.00
November	4.10	3.94	5.00	5.00	4.55	3.38	7.50
December	3.10	3.03	3.75	3.44	3.33	2.57	5.00

Figure 3.4: MIP model

Figure 3.4 represents a flow chart of the MIP model for calculating mean monthly flows based on a set of low flow measurement. As shown in the figure, this model takes low flow measurement, its date and MIP region number as inputs and process them for estimating mean monthly flows for that region. As stated earlier, the actual measurement date plays an important role in computing more realistic mean monthly flows. These mean monthly flows are calculated as:

Mean Coeff. for this month by interpolation if the date is not on 15^{th} April coef = 1/coeff this month April flow = April coeff * Q Monthly flows = April flow * coeffs ($Q_i = Q_{April} * C_i$)

Figure 3.5: Need of interpolation for calculating mean monthly coefficient

The importance of considering the actual date of measurement and the need of calculating actual mean monthly flow of that month are further explained in Figure 3.5. The measured flow is 54 l/s. The corrected flows for April are 45.38 l/s, 54 l/s and 37.5l /s corresponding to the measurement dates as April 1, 15 and 30 respectively. Interpolation helps choosing an installed capacity of a feasible project as per ACPC criteria.

The fact that the mean monthly coefficient calculation plays major role in AEPC acceptance criteria is illustrated further by the following example.

Measured flow (m ³ /s):	1
MIP region (1 -7):	3

Area of basin below 3000m elevation A ₃₀₀₀ (km ²):	65
Turbine discharge (m ³ /s):	1.173
Water losses due to evaporation/flushing (%):	15%

Figure 3.6 is the graphical representation of the outcome of the MIP method. For measurement dates on April 1, 15 and 30 are, corresponding probability of exceedance by using interpolated mean monthly coefficients are presented. The design flow exceeds 11 months and fulfills AEPC criteria if it is measured on April 15th. However, the design flow exceeds only 10 months and does not meet AEPC criteria if it is measured on either 1st or 30th of April.

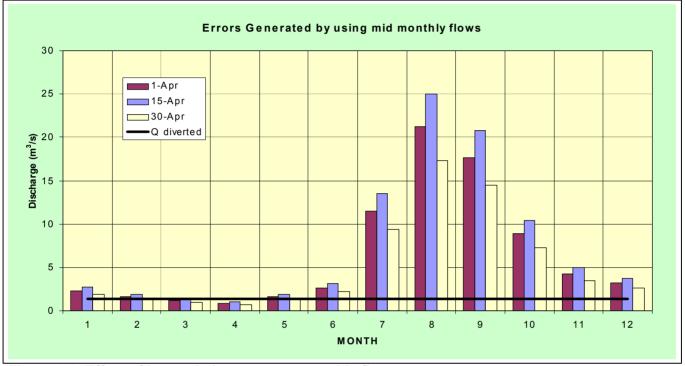


Figure 3.6: Effect of interpolation on mean monthly flows

3.4 WECS/DHM (HYDEST) METHOD

The WECS/DHM (Hydest) Method, which is also known as "Methodologies for estimating hydrologic characteristics of un-gauged locations in Nepal", is developed by WECS/DHM in 1990. Long term flow records of DHM stations (33 for floods and 44 for low flows) were used to derive various hydrological parameters such as the monsoon wetness index (June-September precipitation in mm). The entire country is considered as a single homogenous region. This method generally estimates reliable results if the basin area is more than 100 km² or if the project does not lie within Siwalik or Tarai regions.

Since the instantaneous and daily floods of 20-year return period are recommended to use while designing Nepali micro hydro intake structures, the flood calculations methods by this method are used in the presented spreadsheet.

3.4.1 Flood Flows:

The catchment area below 3000 m contour line is used for the estimation of floods of various return periods. 3000m elevation is believed to be the upper elevation that is influenced by the monsoon precipitation. This method has to be used with caution for catchments significant areas above the snowline. The 2-year and 100-year flood can be calculated using the following equations:

 $Q_{2 \text{ daily}} = 0.8154 \text{ x} (A_{3000} + 1)^{0.9527}$

 $Q_{2 \text{ inst}} = 1.8767 \text{ x} (A_{3000} + 1)^{0.8783}$

 $Q_{100 \text{ daily}} = 4.144 \text{ x} (A_{3000} + 1)^{0.8448}$

 $Q_{100 \text{ inst}} = 14.630 \text{ x} (A_{3000} + 1)^{0.7343}$

Flood peak discharge, Q_F, for any other return periods can be calculated using:

$$Q_{F} = e^{\left(lnQ_{2} + S \cdot \sigma_{lnQF} \right)}$$

Where, S is the standard normal variant for the chosen return period, from Table 3.2, and

$$\sigma_{\text{InQF}} = \frac{\ln\left(\frac{Q_{100}}{Q_2}\right)}{2.326}$$

Table 3.2: Standard normal variants for floods

Return period (T) (yrs)	Standard normal variant (S)
2	0
5	0.842
10	1.282
20	1.645
50	2.054
100	2.326

As shown in Figure 3.7, the Hydest method requires different catchment areas and monsoon wetness index as inputs to estimate hydrological parameters such as the mean monthly flows, floods, low flows and flow duration curve.

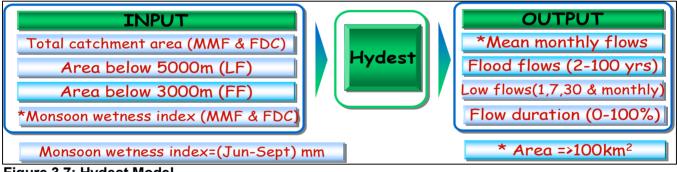


Figure 3.7: Hydest Model

3.5 AEPC MGSP/ESAP GUIDELINES & STANDARDS

The guidelines and standards for construction subsidy approval of micro hydropower projects in Nepal can be summarised as:

- 1. Discharge measurement at the proposed intake site should be between November and May.
- 2. The recommended discharge measurement methods for different discharges are:

Method	Discharge (I/s)
Bucket collection	<10
Weir	10-30
Salt dilution	>30

3. Mean monthly flows should be computed by using MIP method. Alternatively, HYDEST method may be used for catchment area equal to or more than 100 km².

- 4. The design flow should be available at least 11 months in a year (i.e., the probability of exceedance should be 11 months or more). The design flow corresponding to the installed capacity (Q_d) should not be more than 85% of the 11-month exceedance flow. Loses and environmental releases should also be considered if it exceeds 15% of the 11-month exceedance.
- 5. There is a provision of $\pm 10\%$ tolerance on Q_d at the time of commissioning a scheme.
- 6. Construction of flood wall against annual flood is recommended if the design flow exceeds 100 l/s.

3.6 PROGRAM BRIEFING & EXAMPLES

As per the standards and guidelines, the presented spreadsheet is designed to compute MIP mean monthly flows and exceedance of the design flow, Hydest floods and design discharges for different components of a micro hydro schemes. For simplicity, the program considers 30 days a month for all the months. The flow chart for the proposed hydrological calculations is presented in Figure 3.8.

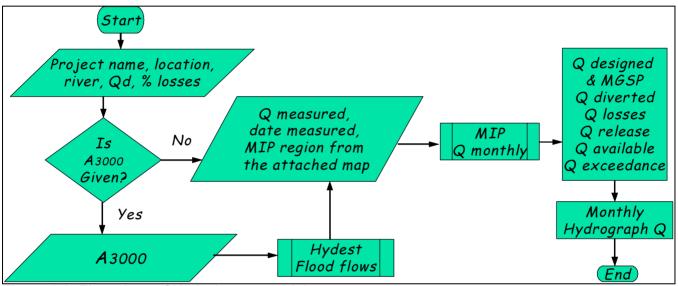


Figure 3.8: Flow chart of Hydrology spreadsheet

A typical example of the spreadsheet including inputs and outputs are presented in Figure 3.9. The information required for computations such as the MIP regions and the corresponding coefficients are presented in the spreadsheet. The MIP region for this project lies in MIP region 3. The measured discharge of 80 l/s on March 23 shows that the project is proposed to utilize a small stream. Although the floods are not critical to the project, they are calculated for sizing floodwall and other structures. The design discharge of 80 l/s has a probability of exceedance of 10 months only and hence does not qualify AEPC acceptance criteria. For AEPC to qualify this project, the turbine design discharge should not exceed 73.389 l/s. The procedures for the calculations are:

MIP mean flows:

Corrected coefficient and mid month discharges (Kc _{December}) for Region 3: Since the measured date of March 23 lies in between March 15th and April 15th,

K _{March} K _{April}	= 1.38 = 1.00
Kc _{March}	= K _{March} + (K _{April} -K _{March})*(Date -15)/30 = 1.38 + (1.00-1.38)*(23-15)/30 = 1.2787
Q _{March}	= Q _{measured} *K _{March} /Kc _{April} = 80 *1.38/1.2787 = 86.34 l/s

Q _{April}	= Q _{March} /K _{March} = 86.34/1.38 = 62.57 l/s
Q _{May}	= Q _{April} *K _{May} = 62.57 * 1.88 = 117.62 l/s

Other mid monthly discharges are calculated similar to the discharge calculation for the month of May.

Hydest flood flows:

The 2-year and 100-year floods are:

Q _{2 daily}	= $0.8154 \text{ x} (A_{3000} + 1)^{0.9527}$ = $0.8154 * (1.5+1)^{0.9527}$ = $1.952 \text{ m}^3/\text{s}$
$Q_{2 \text{ inst}}$	= 1.8767 x (A ₃₀₀₀) ^{0.8783} = 1.8767 x (1.5+1) ^{0.8783} = 4.197 m ³ /s
$Q_{100 \; \text{daily}}$	=4.144 x $(A_{3000} + 1)^{0.8448}$ =4.144 x $(1.5 + 1)^{0.8448}$ = 8.987 m ³ /s
Q _{100 inst}	= $14.630 \times (A_{3000} + 1)^{0.7343}$ = $14.630 \times (1.5+1)^{0.7343}$ = $28.669 \text{ m}^3/\text{s}$

Peak discharges for other return periods are calculated by using these formulas:

$\sigma_{\text{InQF}} = \frac{ln\left(\frac{Q_{100}}{Q_2}\right)}{2.326}$	$Q_{F}=e^{\left(InQ_{2}+S\cdot\sigma_{InQF}\right)}$
---	--

$Q_{20 \; \text{daily}}$	= EXP(LN(1.952)+ 1.645*(LN(8.987/1.952)/2.326)) = 5.747 m³/s
Q _{20 inst}	= EXP(LN(4.197)+ 1.645*(LN(28.669/4.197)/2.326)) = 16.334 m³/s

Different discharge calculations (as per AEPC criteria are presented for examples):

Q _{turbine}	 85% of the 11 month flow exceedance from the MIP flow if the designed flow is higher or the design flow. 73.389 l/s (since the design flow is higher and has 10 months exceedance only)
Q _{diverted}	= Q _{turbine} / (1-%losses) = 73.389 / (0.95) = 77.252 l/s
Q _{losses}	= Q _{diverted} -Q _{turbine} = 77.252-73.389

	= 3.863 l/s
Q _{release}	= Q _{min MIP} *%release = 62.57 * 0.05 = 3.128 l/s
Qrequired at river	= Q _{diverted} + Q _{release} = 77.252+3.128 = 80.380 l/s

A hydrograph including the design flow, exceedance of the proposed design flow and the flow acceptable for AEPC is presented in Figure 3.9.

	HYDROLOGICAL CALCULATIONS FOR UNGAU			
Spreadsheet d	leveloped by Mr. Pushpa Chitrakar, Engineering Advisor, SHPP/GTZ		_	
Referances:2,2	2,4, 6, 12, 13, 15, 16	Date	08-Nov-2005	94
SMALL HYDR	OPOWER PROMOTION PROJECT/GTZ	Revision	2005.10	SHPP
Project:	*Upper Jogmai, Ilam			
Developer	Kankaimai Hydropower P Ltd			
Consultant	EPC Consult			
Designed	Pushpa Chitrakar			
Checked	Pushpa Chitrakar			
INPUT	·			
INPUT River na	ame :	Para	Chhyota Khola	Deading
INPUT River na Locatio	ame:	Bara	nd, Sertung VDC 2,	Dhading
INPUT River na Locatio Measur	ame : n : ed flow for MIP method I/s:	Bara	nd, Sertung VDC 2, 80	
INPUT River na Locatio Measur Month a	ame : n : ed flow for MIP method I/s: and day of flow measurement:	Bara	nd, Sertung VDC2, 80 March	Dhading 23
INPUT River na Locatio Measur Month a	ame : n : ed flow for MIP method I/s:	Bara	nd, Sertung VDC 2, 80	
INPUT River na Location Measur Month a MIP reg	ame : n : ed flow for MIP method I/s: and day of flow measurement:	Bara	nd, Sertung VDC2, 80 March	
INPUT River na Locatio Measur Month a MIP reg Area of	ame : n : ed flow for MIP method I/s: and day of flow measurement: jion (1 -7) :	Bara	nd, Sertung VDC2, 80 March 3	
INPUT River na Location Measur Month a MIP reg Area of Turbina	ame : n : ed flow for MIP method I/s: and day of flow measurement: jion (1 -7) : basin below 3000m elevation A ₃₀₀₀ km ² :	Bara	nd, Sertung VDC2, 80 March 3 1.5	

OUTPUT MIP monthly average discharge

Ivin Thomany average discharge		
Month	@river	To plant
January	169.55	77.25
February	117.62	77.25
March	86.34	77.25
April	62.57	56.31
May	117.62	77.25
June	195.83	77.25
July	847.13	77.25
August	1564.13	77.25
September	1303.23	77.25
October	651.93	77.25
November	312.83	77.25
December	234.62	77.25
Annual av	471.950	75.506

Hydest Flood Flows

Return Period (yrs)	Flood Discharge (m ³ /s)	
	Daily	Instantaneous
2	1.952	4.197
20	5.747	16.334
100	8.987	28.669

Discharges (I/s)	Designed	As per MGSP
Qturbine (Qd)	80.000	73.389
Q diverted Qd+Qlosses	84.211	77.252
Q losses 5% of Qd	4.211	3.863
Q release 10% of Qlow	6.257	6.257
Qmin required @river	90.467	83.508
Q exceedence (month)	10	11
Q turbine for 11m	73.821	

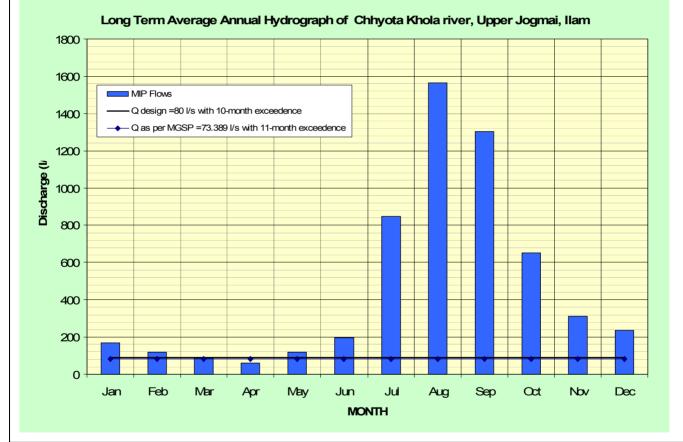


Figure 3.9: Typical example of a hydrological parameters calculation spreadsheet "Hydrology"

4 HEADWORKS

4.1 INTRODUCTION AND DEFINITIONS

Headworks

A headworks consists of all structural components required for safe withdrawal of desired water from a source river into a canal/conduit. Intake, weir, protection works, etc., are the main structural components. Indicators of an ideal headworks can be summarized as:

- 1. Withdrawal of desired flows (i.e., Q_{diverted} and spilling in case of flood).
- 2. Sediment bypass of diversion structure (Continued sediment transportation along the river).
- 3. Debris bypass (Continued debris bypass without any accumulation).
- 4. Hazard flood bypass with minimum detrimental effects.
- 5. Sediment control at intake by blocking/reducing sediment intake into the system.
- 6. Settling basin control (settling and flushing of finer sediments entered into the system through intakes or open canals).

Intake

An intake can be defined as a structure that diverts water from river or other water course to a conveyance system downstream of the intake. Side intake and bottom intake are the common types of river intakes that are used in Nepali micro hydropower schemes.

Conveyance Intake is an intake which supplies water to a conveyance other than the pressure conduit to the turbine. Power Intake is an intake which supplies water to the pressure conduit to the turbine.

Side Intake

A structure built along a river bank and in front of a canal / conduit end for diverting the required water safely is known as a side intake. Side intakes are simple, less expensive, easy to build and maintain.

Bottom/Drop/Tyrolean/Trench Intake

A structure built across and beneath a river for capturing water from the bed of a river and drops it directly in to a headrace is known as a bottom intake. These are mainly useful for areas having less sediment movement, steeper gradient, and surplus flow for continual flushing. Inaccessibility of trashrack throughout the monsoon season and exposure of the system to all the bed load even though only a small part of the water is drawn are the common problems/drawbacks of drop intakes.

Weir

A weir is a structure built across a river to raise the river water and store it for diverting a required flow towards the intake.

Protection Works

Protection works are the river protection and river training works to safeguard the headworks against floods, debris and sediments.

Trashrack

A trashrack is a structure placed at an intake mouth to prevent floating logs and boulders entering into headrace. Coarse trashracks and fine trashracks are provided at the river intake and penstock intake respectively.

4.2 AEPC MGSP/ESAP GUIDELINES AND STANDARDS

According to AEPC MGSP/ESAP guidelines, the requirements set for headworks components such as weirs, intakes and trashracks are briefly outlines in this section.

4.2.1 Weir

- Type: A weir can be either temporary or permanent in nature. A dry stone or gabion or mud stone masonry can be termed as a temporary weir whereas a cement masonry or concrete weir can be termed as a permanent weir.
- Location: It is recommended that the weir should be 5m to 20m d/s of intake. This will assure that water is always available and there is no sediment deposit in front of the intake. A narrow river width with boulders is preferable for weir location.
- Height: The weir should be sufficiently high to create enough submergence and driving head.
- Stability: Permanent weir should be stable against sinking, overturning and sliding even during the designed floods.

4.2.2 Intake

- Type: Side intakes are suitable for all types of river categories whereas the drop intake is recommended for rivers having longitudinal slopes more than 10% with relatively less sediment and excess flushing discharge. The side intake is generally is of rectangular orifice type with a minimum submergence of 50mm. The side intake should be at:
 - Straight river u/s & d/s of the intake.
 - Alternatively, on the outer side of the bend to minimize sediment problems and maximise the assured supply of water.
 - Relatively permanent river course.
 - By the side of rock outcrops or large boulders for stability and strength.
- Capacity: According to the flushing requirement and tentative losses the intake has to be oversized than the design flow by 10% to 20% (or Q_{diverted}).
- A course trashrack should be provided to prevent big boulders and floating logs from entering into the headrace system.
- A gate/stop log should be provided to regulate flow (adjust/ close) during operation and maintenance.
- To optimize downstream canal and other structures, a spillway should be provided close to the intake.

4.2.3 Intake Trashrack

The recommended intake coarse trashrack is made of vertical mild steel strips of 5mm*40mm to 5mm*75mm with a clear spacing not exceeding 75mm. The approach velocity should be less than 1.0m/s. For transportation, the weight of a piece of trashrack should not exceed 60 kg. With respect to the combined effect of racking and hydraulic purposes, placing of trashrack at 3V:1H is considered to be the optimum option.

4.3 PROGRAM BRIEFINGS AND EXAMPLES

There are two spreadsheets for designing side intakes and bottom intakes respectively. The first part of the side intake calculates trashrack parameters while the second part of it calculates side intake parameters including spillways for load rejection and flood discharge off-take. The second spreadsheet calculates all the design parameters for a drop intake.

Since most of the program flow chart in this section is self explanatory or the calculation procedures are familiar to most of the practicing stakeholders, only important points are explained.

Figures 4.1 to 4.7 presents the assumptions, flow charts and typical examples for calculating trashrack parameters, side intake and drop intake dimensioning.

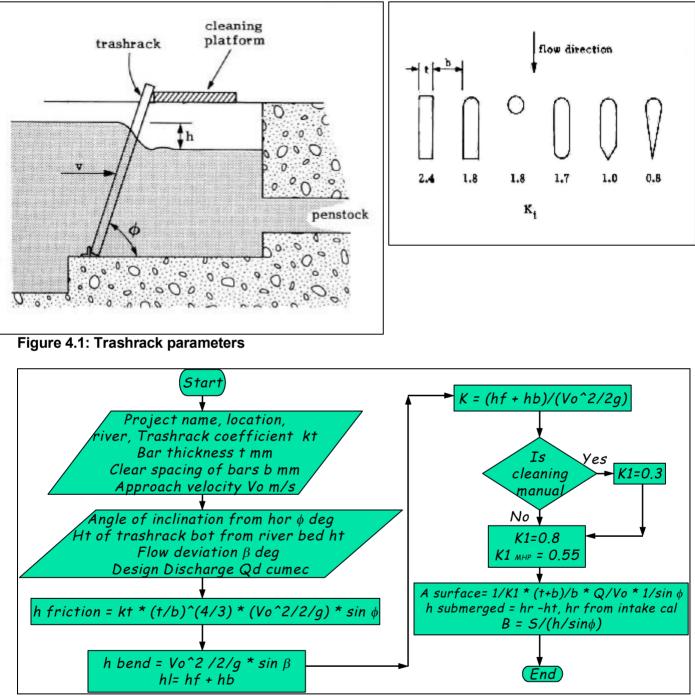


Figure 4.2: Flow chart for trashrack calculations

The trashrack coefficients for different cross section of the bars are presented in the pull down menu. Typical bar thickness, clear spacing and approach velocity are suggested in the respective cell notes.

According to the flow chart presented in Figure 4.2, the trashrack losses constitute of frictional and bend losses. The frictional losses depend on the geometry of trashrack such as the trashrack coefficient, thickness and clear spacing of bars, inclination of the trashrack and the approach velocity. The bend loss depends on the hydraulics of the approaching flow such as the approach velocity and its deviated direction with respect to the normal of the trashrack surface.

The trashrack surface area coefficient K1 for automatic racking is 0.8 whereas it is 0.3 for manual racking suggesting that the racking area for manual operation to recommended surface area is 3.33 times more than the theoretical area. Manual racking is recommended for Nepali MHPs. Since the consequence of temporary reduced trashrack area in micro hydro is not severe and the trashrack sites are generally accessible to operators all the year, the average of automatic and manual racking coefficient is taken for practical and economic reason.

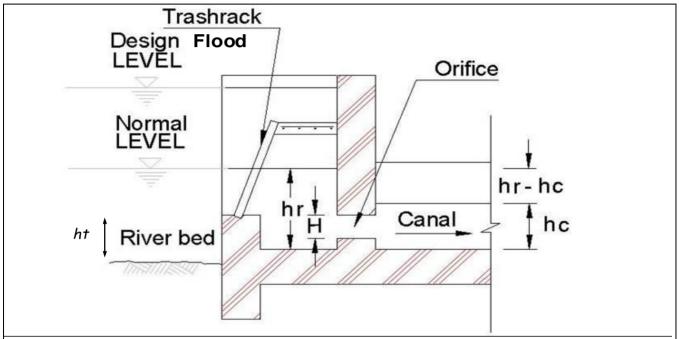
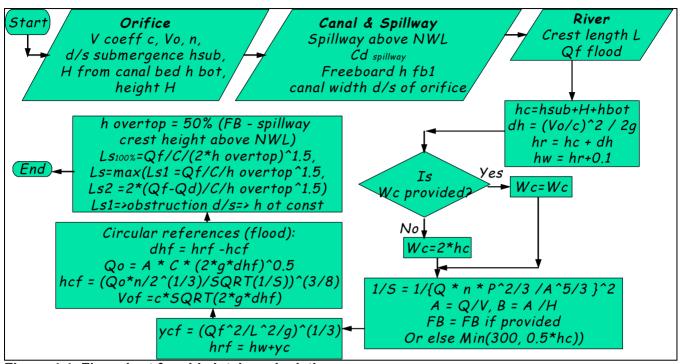



Figure 4.3: Side intake parameters

A typical side intake parameters considered in the spreadsheet is presented in Figure 4.3. The procedures for designing a side intake parameters are presented in with the help of a flow chart in Figure 4.4. An example is presented in Figure 4.6. The calculation processes for designing a typical side intake are also presented in the following section.

Trashrack Design:

Head losses. = kt * (t/b) $^{(4/3)}$ * (Vo $^{2}/2g$)* sin ϕ = 2.4*(4/25) $^{(4/3)}$ * (0. 5 $^{2}/2/9.81$)* sin 60° h friction = 0.0023m = (Vo $^{2}/2g$)* sin β h bend $= (0.5^{2}/2/9.81)^{*} \sin 20^{\circ}$ = 0.0044m h total = h friction + h bend = 0.00232 + 0.0044= 0.0067 mA surface S = $1/k1^{(t+b)/b} * Q/Vo * 1/sin \phi$ $= 1/0.55^{*}(4+25)/25^{*}0.077^{*}1/\sin 60^{\circ}$ $= 0.3763 \text{ m}^2$ Width B $= S/(h/ \sin \phi)$ $= 0.3763/(.3/\sin 60^{\circ})$

= 1.09 m

Figure 4.4: Flow chart for side intake calculations

Side Intake calculations:

Normal condition: Depth @ canal (hc)	 = h submergence + height of orifice + height of orifice sill from bottom of the canal = 0.05+0.2+0.2 = 0.45m
Driving head (dh)	= (Vo/c) ² /2/g = (1.2/0.8) ² /2/9.81 = 0.115 m
Head at river (hr)	= hc+dh (this value can be provided) = 0.45+0.115 = 0.565 m
Height of weir (hw)	= hr +0.1 = 0.565+0.1 = 0.665 m

Design of Orifice Side Intake			
Spreadsheet developed by Mr. Pushpa Chitrakar, Engin			(
	Date	08-Nov-2005	tz)
SMALL HYDROPOWER PROMOTION PROJECT/GTZ			SHPP
v	•		
-		Jogmai, Ilam	
-		imai Hydropower P Ltd	
	EPC C		
•		a Chitrakar	
Checked	Pushpa	a Chitrakar	
Design Carse Trashrack Flood Level Orifice (H*B) Nomel Min 100 trick & 1000 wide Nomel Walk Cessify Nomel Top =50191 Image: Design Image: Design Nomel Image: Design Image: Design Image: Design Image: Design			
		=0.2x0.32	
Trashrack calculations		=0.2x0.32	
Trashrack calculations		=0.2x0.32	
Trashrack calculations Input Trashrack coefficient k	2.4	Output	500
Trashrack calculations Input Trashrack coefficient kt Bar thickness t mm	4.00	Output Headloss due to friction hf m	
Trashrack calculations Input Trashrack coefficient kt Bar thickness t mm Clear spacing of bars b mm	4.00 25.00	Output Image: Construction of the second s	0.0023
Trashrack calculations Input Trashrack coefficient kt Bar thickness t mm Clear spacing of bars b mm Approach velocity Vo m/s	4.00 25.00 0.50	Output Output Headloss due to friction hf m Headloss due to bends hb m Headloss coeff K	0.0023 0.0044 0.5226
Trashrack calculations Input Trashrack coefficient kt Bar thickness t mm Clear spacing of bars b mm Approach velocity Vo m/s Angle of inclination from horizontal \$	4.00 25.00 0.50 60.00	Output 0 Headloss due to friction hf m 0 Headloss due to bends hb m 0 Headloss due to bends hb m 0 Headloss scoeff K 0 Total headloss ht m	
Trashrack calculations Input Trashrack coefficient kt Bar thickness t mm Clear spacing of bars b mm Approach velocity Vo m/s Angle of inclination from horizontal φ deg Flow deviation β deg	4.00 25.00 0.50 60.00 20.00	Output Output Output Headloss due to friction hf m Headloss due to bends hb m Headloss due to bends hb m Headloss coeff K Headloss ht m Surface area A surface m²	0.0023 0.0044 0.5226 0.0067 0.3750
Trashrack calculations Input Trashrack coefficient kt Bar thickness t mm Clear spacing of bars b mm Approach velocity Vo m/s Angle of inclination from horizontal φ deg Flow deviation β deg Design Discharge Qd currec	4.00 25.00 0.50 60.00 20.00 0.077	Output Output Image: Contract of the second	0.0023 0.0023 0.0044 0.5226 0.0067 0.3750 0.3647
Trashrack calculations Input Trashrack coefficient kt Bar thickness t mm Clear spacing of bars b mm Approach velocity Vo m/s Angle of inclination from horizontal φ deg Flow deviation β deg	4.00 25.00 0.50 60.00 20.00	Output Output Headloss due to friction hf m Headloss due to bends hb m Headloss coeff K Headloss coeff K Headloss due to bends hb m Headloss coeff K Headloss coeff K Headloss due to bends hb m Headloss coeff K Headloss coeff K Headloss th m	0.0023 0.0024 0.0044 0.5226 0.0067 0.3750
Trashrack calculations Input Trashrack coefficient kt Bar thickness t mm Clear spacing of bars b mm Approach velocity Vo m/s Angle of inclination from horizontal φ deg Flow deviation β deg Design Discharge Qd currec Height of trashrack bottom from river bed ht Canal invert level (m)	4.00 25.00 60.00 20.00 0.077 0.200 500.00	Output 0 Headloss due to friction hf m 0 Headloss due to bends hb m 0 Headloss due to bends hb m 0 Headloss coeff K 0 Total headloss ht m 0 Surface area A surface m² 0 Vertical height h m 0 Trashrack width B m	0.0023 0.0023 0.0044 0.5226 0.0067 0.3750 0.3647
Trashrack calculations Input Trashrack coefficient kt Bar thickness t mm Clear spacing of bars b mm Clear spacing of bars b mm Approach velocity Vo m/s Angle of inclination from horizontal φ deg Flow deviation β deg Design Discharge Qd currec Height of trashrack bottom from river bed ht Canal invert level (m) Orifice Calculations for (B = 2H or provided) rec	4.00 25.00 60.00 20.00 0.077 0.200 500.00	Output 0 Headloss due to friction hf m 0 Headloss due to bends hb m 0 Headloss due to bends hb m 0 Headloss coeff K 0 Total headloss ht m 0 Surface area A surface m² 0 Vertical height h m 0 Trashrack width B m	0.0023 0.0023 0.0044 0.5226 0.0067 0.3750 0.3647
Trashrack calculations Input Trashrack coefficient kt Bar thickness t mm Clear spacing of bars b mm Clear spacing of bars b mm Approach velocity Vo m/s Angle of inclination from horizontal φ deg Flow deviation β deg Design Discharge Qd currec Height of trashrack bottom from river bed ht Canal invert level (m) Orifice Calculations for (B = 2H or provided) rec Input	4.00 25.00 60.00 20.00 0.077 0.200 500.00	Output Image: Contract of the second secon	0.0023 0.0023 0.0044 0.5226 0.0067 0.3750 0.3647
Trashrack calculations Input Trashrack coefficient kt Bar thickness t mm Clear spacing of bars b mm Approach velocity Vo m/s Angle of inclination from horizontal φ deg Flow deviation β deg Design Discharge Qd currec Height of trashrack bottom from river bed ht Canal invert level (m) Orifice Calculations for (B = 2H or provided) rec Input Orifice	4.00 25.00 0.50 60.00 20.00 0.077 0.200 500.00	Output 0 Headloss due to friction hf m 0 Headloss due to bends hb m 0 Headloss due to bends hb m 0 Headloss due to bends hb m 0 Headloss coeff K 0 Total headloss ht m 0 Surface area A surface m² 0 Total headloss ht m 0 Surface area A surface m² 0 Trashrack width B m	0.0023 0.0044 0.5226 0.0067 0.3750 0.3647 0.8906
Trashrack calculations Input Trashrack coefficient kt Bar thickness t mm Clear spacing of bars b mm Approach velocity Vo m/s Angle of inclination from horizontal φ deg Flow deviation β deg Design Discharge Qd currec Height of trashrack bottom from river bed ht Canal invert level (m) Orifice Calculations for (B = 2H or provided) rec Input Orifice	4.00 25.00 60.00 20.00 0.077 0.200 500.00 ctangula	Output Output Headloss due to friction hf m Headloss due to bends hb m Headloss coeff K Headloss coeff K Headloss due to bends hb m Headloss due to bends hb m <t< td=""><td>0.0023 0.0044 0.5226 0.0067 0.3750 0.3647 0.38906 0.38906 0.38906</td></t<>	0.0023 0.0044 0.5226 0.0067 0.3750 0.3647 0.38906 0.38906 0.38906
Trashrack calculations Input Trashrack coefficient kt Bar thickness t mm Clear spacing of bars b mm Clear spacing of bars b mm Approach velocity Vo m/s Angle of inclination from horizontal φ deg Flow deviation β deg Design Discharge Qd currec Height of trashrack bottom from river bed ht Canal invert level (m) Orifice Calculations for (B = 2H or provided) rec Input Orifice Velocity coeff of orifice c	4.00 25.00 60.00 20.00 0.077 0.200 500.00 ctangula	Output 0 Headloss due to friction hf m 0 Headloss due to bends hb m 0 Headloss due to bends hb m 0 Headloss coeff K 0 Total headloss ht m 0 Surface area A surface m² 0 Surface area A surface m² 0 Trashrack width B m 0 Trashrack width L m 0 Crest length L m 2 Provided Q flood m³/s	5.000 0.0023 0.0044 0.5226 0.0067 0.3750 0.3750 0.3647 0.38906
Trashrack calculations Input Trashrack coefficient kt Bar thickness t mm Clear spacing of bars b mm Clear spacing of bars b mm Approach velocity Vo m/s Angle of inclination from horizontal φ deg Flow deviation β deg Design Discharge Qd currec Height of trashrack bottom from river bed ht Canal invert level (m) Orifice Calculations for (B = 2H or provided) rec Input Orifice Velocity coeff of orifice c Velocity through orifice Vo m/s Manning's coeff of roughness	4.00 25.00 0.50 60.00 20.00 0.077 0.200 500.00 500.00 ctangula 0.8 ▼ 1.2 0.02 ▼	Output 0 Headloss due to friction hf m 0 Headloss due to bends hb m 0 Headloss due to bends hb m 0 Headloss coeff K 0 Total headloss ht m 0 Surface area A surface m² 0 Total headloss ht m 0 Surface area A surface m² 0 Trashrack width B m 0 Trashrack width B m 0 Trest length L m 2 Provided Q flood m³/s Q flood m³/s (Q ₂₀ for M-P with Qd>100) 1	5.000 5.000 0.0023 0.0044 0.5226 0.3750 0.3750 0.3647 0.3750 0.3647 0.0000 0.0000 0.0000 0.0000 0.3647 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000
Trashrack calculations Input Trashrack coefficient kt Bar thickness t mm Clear spacing of bars b mm Approach velocity Vo m/s Angle of inclination from horizontal φ deg Flow deviation β deg Design Discharge Qd currec Height of trashrack bottom from river bed ht Canal invert level (m) Orifice Calculations for (B = 2H or provided) rec Input Orifice Velocity coeff of orifice c Velocity through orifice Vo m/s Manning's coeff of roughness Downstream submergence depth hsub m	4.00 25.00 60.00 20.00 500.00 500.00 ctangula 0.8 • 1.2 0.02 • 0.050	Output Output Headloss due to friction hf m Headloss due to bends hb m Headloss coeff K Headloss due to bends hb m Headloss coeff K Head	5.000 0.0023 0.0044 0.5226 0.3750 0.3750 0.3647 0.8906 0.3647 0.8906
Trashrack calculations Input Trashrack coefficient k Bar thickness t m Clear spacing of bars b m Approach velocity Vo m/s Angle of inclination from horizontal φ deg Flow deviation β deg Design Discharge Qd currec Height of trashrack bottom from river bed ht Canal invert level (m) Orifice Calculations for (B = 2H or provided) rec Input Orifice Velocity coeff of orifice c Velocity through orifice Vo m/s Manning's coeff of roughness Downstream submergence depth hsub m Orifice height Hm	4.00 25.00 60.00 20.00 0.077 0.200 500.00 500.00 ctangula 0.8 • 1.2 0.02 • 0.050 0.200	Output Output Headloss due to friction hf m Headloss due to bends hb m Headloss due to bends hb m Headloss due to bends hb m Headloss coeff K Hea	5.000 5.000 5.000 0.0067 0.3750 0.3750 0.3750 0.3750 0.3750 0.3750 0.0067 0.3750 0.0067 0.3750 0.0067 0.3750 0.0067 0.3750 0.0067 0.3750 0.0067 0.3750 0.3647 0.0000 0.3647 0.3647 0.3647 0.3647 0.3647 0.3647 0.3647 0.3647 0.3647 0.3647 0.3647 0.3647 0.3647 0.3647 0.3647 0.3647 0.0000 0.0000 0.3647 0.0000 0.0000 0.0000 0.3647 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000
Trashrack calculations Input Trashrack coefficient kt Bar thickness t mm Olear spacing of bars b mm Approach velocity Vo m/s Angle of inclination from horizontal φ deg Flow deviation β deg Design Discharge Qd currec Height of trashrack bottom from river bed ht Canal invert level (m) Orifice Calculations for (B = 2H or provided) rec Input Orifice Velocity coeff of orifice c Velocity through orifice Vo m/s Manning's coeff of roughness Downstream submergence depth hsub m Orifice height Hm Height of orifice from canal bed h bot m	4.00 25.00 60.00 20.00 0.077 0.200 500.00 500.00 ctangula 0.8 ▼ 1.2 0.02 ▼ 0.050 0.200	Output Image: Control of the second	5.000 5.000 0.0023 0.0044 0.5226 0.0067 0.3750 0.3750 0.3750 0.3750 0.3647 0.3647 0.36906 0.0000 0.000 0.000000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Trashrack calculations Input Trashrack coefficient k Bar thickness t m Clear spacing of bars b m Approach velocity Vo m/s Angle of inclination from horizontal φ deg Flow deviation β deg Design Discharge Qd currec Height of trashrack bottom from river bed ht Canal invert level (m) Orifice Calculations for (B = 2H or provided) rec Input Orifice Velocity coeff of orifice c Velocity through orifice Vo m/s Manning's coeff of roughness Downstream submergence depth hsub m Orifice height Hm	4.00 25.00 60.00 20.00 0.077 0.200 500.00 500.00 ctangula 0.8 • 1.2 0.02 • 0.050 0.200	Output 0 Headloss due to friction hf m 0 Headloss due to bends hb m 0 Headloss due to bends hb m 0 Headloss due to bends hb m 0 Headloss coeff K 0 Surface area A surface m² 0 Surface area A surface m² 0 Trashrack width B m 0 Trashrack width B m 0 Trest length L m 2 Provided Q flood m³/s 1 Q flood m³/s (Q ₂₀ for M-P with Qb>100) 0 Used Q flood 0 Spillway 0 Spillway discharge coeff	5.000 5.000 5.000 0.067 0.3750 0.3750 0.3750 0.3647 0.3647 0.3647 0.3647 0.3647 0.3647 0.3647 0.3647 0.3647 0.3647 0.3647 0.0000 0.00000 0.0000 0.0000 0.000000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

	Flood	
0.500	Oritical depth of water at crest yc m	0.742
1865	Flood head at river hf r = hw+yc m	1.406
0.450	Head difference dhf	0.916
0.300	Velocity through orifice Vof m/s	3.392
0.064	Qintake Qf currec	0.218
0.321	Depth of water at canal (hc f) m	0.490
1.200		
0.500	Spillway	
0.115	Ls for Qf m (d/s Obs & 100% hot -50)	1.521
0.565	Length of spillway Ls1 for Qf m (d/s Obs)	3.078
0.665	Length of spillway Ls2 for Qf-Qd m	3.978
0.125	Designed spillway length Ls m	3.978
	1865 0.450 0.300 0.064 0.321 1.200 0.500 0.115 0.565 0.665	0.500 Critical depth of water at crest yc m 1865 Flood head at river hf r = hw+yc m 0.450 Head difference dhf 0.300 Velocity through orifice Vof m/s 0.064 Qintake Qf currec 0.321 Depth of water at canal (hc f) m 1.200 0.500 0.115 Ls for Qf m (d/s Cbs & 100% hot -50) 0.565 Length of spillway Ls1 for Qf m (d/s Cbs)

Figure 4.5: An example of side intake calculations

Orifice area (A)	= Q/V = 0.77/1.2 = 0.064 m ²
Orifice width (B)	= A/H = 0.064/.2 = 0.322 m
Flood: Critical depth at cres	t (vc)= (Qf²/L²/a) ^{1/3}

	$(90)^{-1} ((10^{2}/5^{2}/9.81)^{1/3})^{-1/3}$ = 0.742 m
Head at river (hf r)	= hw+yc = 0.665+0.742 = 1.407 m

Water depth at canal during flood (by equating and iterating flow coming from orifice to that of canal flow) (hcf) = 0.490m

Q intake (Qf)	= 0.218 m ³ /s
Spillway overtopping he	eight (h overtop) = 50%(Free board –h nwl) = 0.5*(.305) = 0.125 m
Spillway length 100% (I	Ls for Qf) = Qf/C/(2*h ot) ^{1.5} = 0.218/1.6/(2*0.125) ^{1.5} = 1.525 m
Spillway length 50%	= Qf/C/(h ot) ^{1.5} = 0.218/1.6/(0.125) ^{1.5} = 3.078 m

The cell containing the depth of water at canal hcf (m) sometimes can generate VALUE# error. Should such an error occur, select the cell, press F2 key and press Enter respectively.

Care should be taken while designing spillway lengths. Ls for Gfm (d/s Obs & 100% hot -50) is only applicable when full downstream obstruction for flood off-take is provided with the help of stop logs or gates. Otherwise, the gradually varying water profile at the spillway has to be considered.

Drop Intake calculations:

The example presented in Figure 4.7 follows the procedures presented in Figure 4.6. Although the calculation procedures for the drop intake are relatively straight forward and simple, it has more restrictions and limitations regarding the stream geometry and operational conditions.

Based on the flow conditions and the slope of rack, flow immediately upstream of the rack may be either critical or sub-critical. Critical depth at the entrance of the rack has to be considered if the rack is steeper (more than 15°). For more details, please refer to EWI UNIDO Standard.

The main differences for considering critical flow and normal flow condition are presented in the Table 4.1. In the presented spreadsheet, critical depth of upstream flow of the intake is calculated and presented if normal flow (sub-critical) is considered.

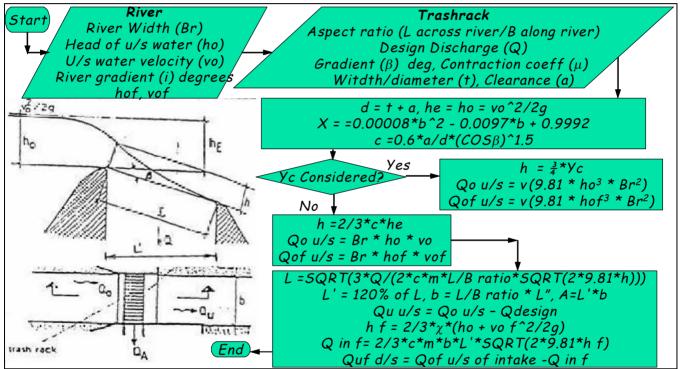
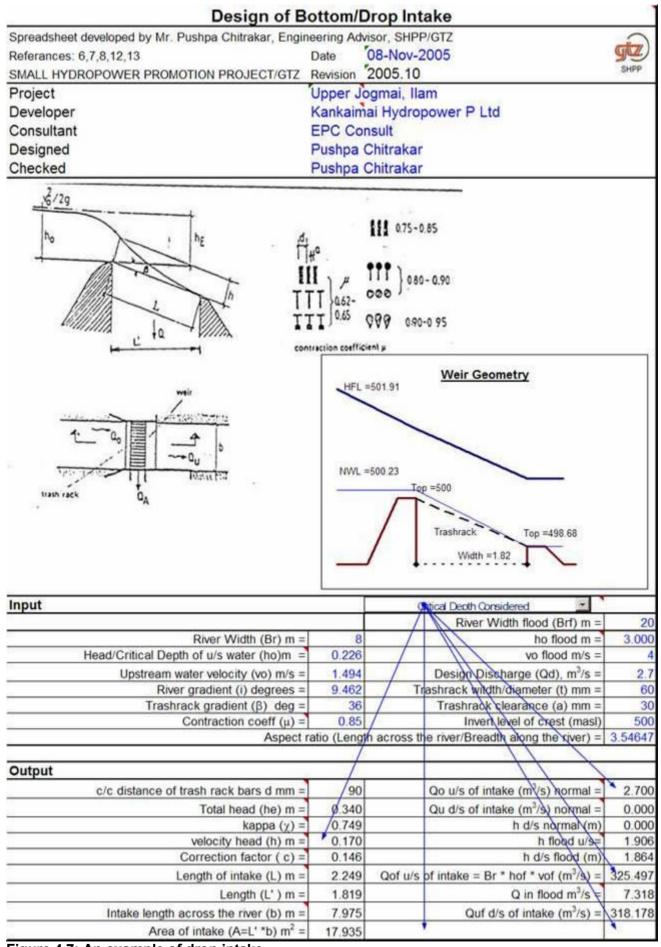


Figure 4.6: Parameters and flow chart of drop intake design

Table 4.1: Drop intake and upstream flow

Parameters	Normal flow	Critical Depth considered
Velocity head (h)	= 2/3 * χ * he	= ³ ⁄ ₄ * Yc
Qo u/s of intake (m ³ /s) normal	= Br * Ho * Vo	= SQRT(9.81*ho ³ *Br ²)
Qo u/s of intake (m ³ /s) flood	= Br * Ho f * Vo	= SQRT(9.81*ho f ³ *Br ²)


The calculations presented in Figure 4.7 are verified in the following section. In this example the flow upstream of the intake is considered to be of critical.

Normal condition:

c/c distance of trashrack bars d (mm)

	= t + a = 60+30 = 90mm
Карра (χ)	= 0.00008*β^2 - 0.0097*β + 0.9992(by curve fitting) = 0.00008*36^2 - 0.0097*36 + 0.9992 = 0.749

Velocity head (h) m	= ¾ * of Yc = ¾ * 0.226 = 0.170 m
Correction factor (c)	= 0.6*a/d*(COSβ)^1.5 = 0.6*30/90*(Cos 36)^1.5 = 0.146
Length of Intake (L) m	= SQRT(3*Q/(2*c*μ*L/B ratio*SQRT(2*9.81*h))) = SQRT(3*2.7/(2*c*0.85*3.546468*SQRT(2*9.81*.170))) = 2.249 m

Figure 4.7: An example of drop intake

Length (L') m	= L*COS(β) = 2.249*cos (36) = 1.819 m
Intake length across the	e river (b) m = L/B ration * L = 3.546468*2.249 = 7.975m
Area of intake (A) m ²	= L * b = 2.249 * 7.975 = 17.935 m ²
Qo u/s of intake (m³/s)	= SQRT(9.81*ho ³ *Br ²) = SQRT(9.81*.226 ³ *8 ²) = 2.7 m ³ /s
Qu d/s of intake (m ³ /s)	= Qo u/s -Qd = 2.7-2.7 = 0 m ³ /s
Intake length across the	e river (b) m = L/B ration * L = 3.546468*2.249 = 7.975m
Flood: h flood (hf) m	= $2/3^{*}\chi^{*}$ (ho flood+vo flood^2/2g) = $2/3^{*}0.749^{*}(3+4^{2}/2/9.81)$
Qo u/s of intake (m³/s)	= 1.906 m = SQRT(9.81*hof ³ *Br ²) = SQRT(9.81*1.906 ³ *20 ²) = 325.497 m ³ /s
Qo in (off-take) (m³/s)	= $2/3*c*\mu*b*L*SQRT(2*9.81*h flood)$ = $2/3*0.146*0.85*7.975*2.249*SQRT(2*9.81*1.906)$ = 7.318 m ³ /s (this discharge can be reduced by introducing a throttling pipe d/s of the intake)
Qu d/s of intake (m ³ /s)	= Qo u/s -Qd = 315.497-7.318 = 318.178 m ³ /s

5 HEADRACE/TAILRACE

5.1 GENERAL

A headrace or a tailrace can be defined as a conveyance system that conveys designed discharge from one point (e.g. intake) to another (e.g. forebay). Generally canal systems are used in all micro hydropower schemes whereas pipe systems are used for specific e.g. difficult terrain. A canal can be unlined (earthen) or lined (stone masonry or concrete). The typical canal cross sections used in micro hydropower schemes can be rectangular or trapezoidal or triangular or semi-circular in shape. Pipes used in MHP can be of HDPE or mild steel and it can be either open or buried.

For computing head losses, Manning's equation is used for canal whereas Darcy-Weisbach equation is used for pipe.

5.2 AEPC MGSP/ESAP GUIDELINES AND STANDARDS

5.2.1 Canal

- a) Capacity: The canal should be able to carry the design flow with adequate freeboard, escapes to spill excess flow. A canal should generally be able to carry 110 to 120 % of the design discharge.
- b) Velocity: Self cleaning but non erosive (≥ 0.3 m/s).
- c) Unlined canal: In stable ground for $Q \le 30$ l/s
- d) Lined canal: For higher discharge and unstable ground, canals 1:4 Stone masonry / Concrete (short: crossings or unstable ground) is recommended. It is also recommended to minimize seepage loss and hence minimize the subsequent landslides.
- e) Sufficient spillways and escapes as required.
- f) Freeboard: Minimum of 300mm or half of water depth.
- g) Stability and Safety against rock fall, landslide & storm runoff.
- h) Optimum Canal Geometry: Rectangular or trapezoidal section for lined canal and trapezoidal section for unlined canal are recommended.

5.2.2 Pipe

- a) PVC/HDPE: Buried at least 1m into ground.
- b) Steel/Cast Iron: As pipe bridge at short crossings/landslides.
- c) Pipe inlet with trashracks for a pipe length of more than 50m.
- d) Minimum submergence depth of $1.5*v^2/2g$ at upstream end.
- e) Provision of air valves and wash outs where necessary.

5.3 PROGRAM BRIEFING AND EXAMPLES

5.3.1 Canal

a) Permissible erosion free velocities for different soil conditions:

Fine sand	=0.3-0.4
Sandy loam	=0.4-0.6
Clayey loam	=0.6-0.8
Clay	=0.8-2.0

Stone masonry =0.8-2.0 Concrete = 1.0-3.0

- b) Sectional profiles considered in the program are:
 - 1) Semicircular
 - 2) Rectangular
 - 3) Triangular
 - 4) Trapezoidal
- c) Two parts of calculations for canals are provided for:
 - 1) Evaluation of the design parameters based on user specified inputs.
 - 2) Optimum canal parameters based on MHP Sourcebook by Allen R Iversin.
- d) Two spreadsheets are included in the Design Aids for:
 - 1) Canal calculations: Calculations procedures are presented in Figure 5.1 with the help of a flow chart and a typical spreadsheet with an illustration is presented in Figure 5.2.
 - 2) Pipe calculations: Pipe calculation flow chart is presented in Figure 5.4. The calculation procedures are further illustrated in Figure 5.5.

5.3.2 Canal

Calculations for a rectangular stone masonry headrace canal for 185 l/s flow presented in Figure 5.2 are briefly described in the following section.

Present Canal:

Area A m ²	= D*B = 0.3*0.5 = 0.15 m ²
Top Width T (m)	= B+2*H*N = 0.5+2*0.3*0 = 0.5m
Wetted Perimeter (m)	= 2*D+B = 2*0.3+.5 = 1.1m
Hydraulic Radius r (m)	= A/P = 0.15/1.1 = 0.136 m
Calculated flow (m ³ /s)	= $A*r^{2/3}*S^{0.5}/n$ = 0.15*0.136 ^{2/3} *0.01299 ^{0.5} /n = 0.226 m ³ /s
Critical Velocity Vc m/s	= sqrt(A*g/T) = sqrt(0.15*9.81/.5) = 1.72 m/s
Velocity V m/s	= Q/A = 0.185/0.15 = 1.233 m (Okay since it is less than 80% of Vc)
Headloss hl (m)	= S*L + di (drops) = 0.01299*20+0 = 0.260m

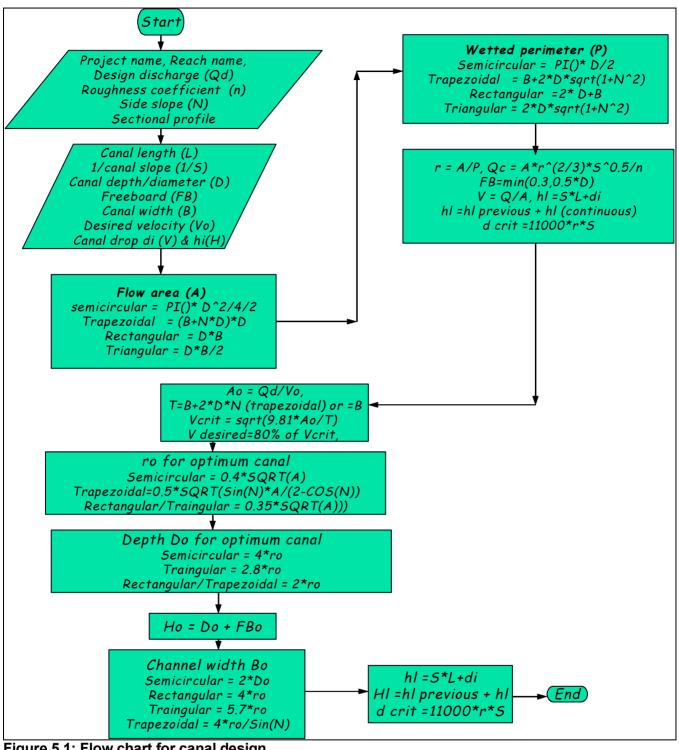


Figure 5.1: Flow chart for canal design

Critical dia of sediment d crit (mm) = 11000*r*S

= 11000*0.136*0.01299

= 19.48mm (i.e., it can self clean sediment of diameter 19.48 or less)

Optimum Canal:

Area A m ²	= Q/v desired
	= 0.185/1
	= 0.185 m ²

Hydraulic Radius ro (m)	= 0.35*SQRT(A) = 0.35*SQRT(0.185) = 0.1505 m
Depth Do (m)	= 2*ro = 2*0.1505 = 0.301m
Top Width Bo (m)	= 4*ro = 4*0.1505 = 0.602m
Critical Velocity Vc m/s	= sqrt(A*g/T) = sqrt(0.185*9.81/.602) = 1.74 m/s (Okay since the desired velocity of 1m/s is less than 80% of Vc)
Headloss hl (m)	= S*L + di (drops) = 0.0050*20+0 = 0.100m
Critical dia of sediment d	crit (mm) = 11000*r*S = 11000*0.136*0.0050 = 8.271mm (i.e., it can self clean sediment of diameter 19.48 or less)

Canal Design: Proposed desi	gn and optin	num canal se	ections	
Spreadsheet developed by Mr. Pushpa Chitr	akar, Engineering /	Advisor, SHPP/GTZ	2	
Referances: 6, 12, 13, 15, 16		Date	09-Nov-2005	gu)
SMALL HYDROPOWER PROMOTION PRO.	IECT/GTZ	Revision	2005.10	SHPP
Project	Upper Jogma	i, Ila m		
Developer	Kankaimai Hyd	ropower P Ltd		
Consultant	EPC Consult			
Designed	Pushpa Chitral	kar		
Checked	Pushpa Chitral	kar		
Input				
Type and Name	Intake Canal	Tailrace	Main2	Main3
Flow (m ³ /s)	0.185	0.145		
Roughness coefficient (n)	0.02 -	0.017 -	0.02 🔻	0.02 -
Sectional Profile	Rectangular	Trapezoidal	Semicircular	Triangular
Side slope N (1V:NHorizontal)	0 -	0.5 -	0 -	0.5 👻
Length of the canal (m)	20	40	150	120
1/Canal slope (s)	77	200	30	72
Channel Depth/diameter D (m)	0.300	0.525	0.300	0.300
Freeboard FB (m)	0.300	0.250	0.150	0.150
Channel Width (B) m	0.500	1.000	0.400	0.400
Channel Drops di m	0.000	0.000	0.000	0.000
Channel Drops Horizontal length hi m	0.000	0.000	0.000	0.000
Desired velocity Vo (m/s)	1.000	1.500	1.500	1.500

I

Out	put

Side slope d (degrees)	0.000	63.435	0.000	63.435
Canal slope S	0.01299	0.00500	0.03333	0.01389
Total depth H (m)	0.600	0.775	0.450	0.450
Chainage L (m)	20.000	60.000	210.000	330.000

Present canal

Area A m ²	0.150	0.663	0.035	0.060
Top Width T (m)	0.500	1.525	0.400	0.400
Wetted Perimeter P (m)	1.100	2.174	0.471	0.671
Hydraulic Radius r (m)	0.136	0.305	0.075	0.089
Calculated flow (m ³ /s) & remarks	0.226 high	1.249 high	0.057 low	0.071 low
Comment on freeboard	ok	low	ok	ok
Velocity V m/s	1.233	0.219	4.103	2.417
Critical Velocity Vc m/s & Remarks	1.72 Ok	2.06 Ok	0.93 Not Ok	1.21 Not Ok
Headloss hl (m)	0.260	0.200	5.000	1.667
Total headloss H(m)	0.260	0.460	5.460	7.126
Critical dia of sediment d crit (mm)	19.481	16.769	27.500	13.665

Optimum canal

Area Ao m ²	0.1850	0.0967	0.0967	0.0967
Top Width T (m)	0.6022	0.7636	0.9949	0.4867
Critical Velocity Vc m/s & Remarks	1.74 Ok	1.11 Not Ok	0.98 Not Ok	1.4 Not Ok
Hydraulic Radius ro (m)	0.1505	0.1180	0.1244	0.1088
Channel Depth/diameter Do (m)	0.301	0.236	0.497	0.218
Freeboard Fbo (m)	0.150	0.263	0.150	0.150
Total depth Hb (m)	0.451	0.498	0.647	0.368
Channel Width Bo (m)	0.602	0.528	0.995	0.487
Canal Slope	0.0050	0.0112	0.0145	0.0173
Headloss hlo (m)	0.100	0.449	2.175	2.079
Total headloss Ho(m)	0.100	0.549	2.724	4.803
Critical dia of sediment d crito (mm)	8.271	14.584	19.834	20.736
Figure E.Q. An exemple of eared deal	er 10			

Figure 5.2: An example of canal design.

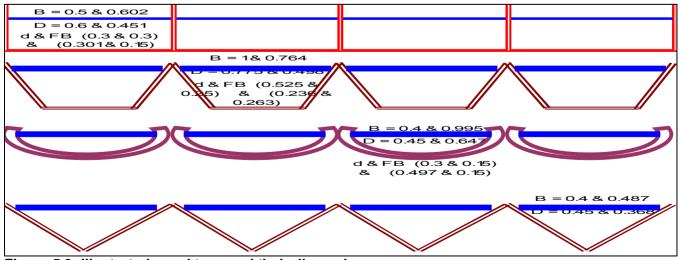


Figure 5.3: Illustrated canal type and their dimensions.

5.3.3 Pipe

Calculations for a headrace pipe presented in Figure 5.5 are briefly described in the following section. The trashrack calculations are similar to the trashrack calculations presented earlier in the intake design, hence it is not presented in this section. Trashrack loss of 0.02m is taken in this example. In this example, one 140m long HDPE pipe with 260mm internal diameter is considered for a design flow of 160 I/s each.

Sizing of headrace pipe Headloss HDPE pipe roughness, k =0.06 mm

$$\frac{k}{d} = \frac{0.06 \, mm}{260 \, mm} = 0.000231$$
$$\frac{1.2Q}{d} = \frac{1.2x0.160}{0.260} = 0.73846$$

From Moody chart (Appendix), f=0.0153. Based on an iterative method presented in Layman's Guidebook on How to Develop a Small Hydro Site, European Small Hydropower Association (ESHA), the presented spreadsheet calculates this friction factor and greatly speeds up the pipe selection decision for consultants by iterating following equations:

$$\alpha = \sqrt{1/f} \qquad \qquad \alpha = -2\log\left(\frac{e/D}{3.7} + \frac{2.51}{N_R}\alpha\right)$$

Friction loss
$$= f \frac{l}{d} \frac{V^2}{2g} = 0.0826 * Q^2 * f \frac{l}{d^5}$$

 $h_{wallloss} = 0.0826 * 0.160^2 * 0.0153 * \frac{140}{0.26^5} = 3.82 m$

Turbulent losses considering, K entrance for inward projecting pipe= 0.8, Kexit=1.0 and Kbends based on the bending angles (see Table in the Appendix)

$$\therefore h_{turbulentlosses} = \left(K_{entrance} + K_{bends} + K_{valve} + K_{others} + K_{exit}\right) \left(\frac{V^2}{2g}\right)$$
$$= (0.8 + 0.57 + 0 + 0 + 1) * \frac{3.01^2}{2x9.81} = 1.10m$$

Total head loss= 3.82 m + 0.02+1.10 m = 4.94 m

Water level difference between intake and storage reservoir is 7m and 95% of this head is allowed for total headloss. Only 70.56% is estimated as the total headloss. Although the exiting water has some residual head, it is recommended to provide some marginal residual head for safety reason. The HDPE pipe does not need expansion joints and therefore not calculated.

		TrashrackExp JointBar type,Tmax, Tinst,t,b, Vo,Tmin, GroupΦ, β,ΗL (5)
<i>Exp Joint</i>	Hydraulics	Trashrack
Dimensions, Position	hl(friction, turbulent)	hl, Surface Area,
during installation	Other criteria checking	Width, h submerge

Figure 5.4: Flow chart for pipe design

	HEADR	ACE PIPE CAI		NS		
Spreadsheet developed	I by Mr. Pushpa Chitrakar, Engineerir	ng Advisor, SHPP/GT.	Z		-	1
Referances: 2,4, 6,12,1	13, 15, 16			Date	09-Nov-2005	gu.)
SMALL HYDROPOWER	R PROMOTION PROJECT/GTZ			Revision	2005.10	SHPP
Project:	Upper Jogmai, Ilam	Location:	Jogmai			
Developer	Kankaimai Hydropowe	r P Ltd				
Consultant	EPC Consult					
Designed	Pushpa Chitrakar					
Checked	Pushpa Chitrakar					
INPUT						
				Εα	onomic life (years)	15
Hydraulics:						
Diversion flow Qd (m ³ /s	3)	0.16	D	U	/S Invert Level (m)	1950.00
Flow in each pipe Qi (m	n ³ /s)	0.16	0 %he	ad available o	r headloss hit (m)	95.00%
Gross headHg (m)		7.00	0		Entrance Type	Inward projecti -
				Be	ending radius (r/d)	5 -
Headrace pipe						
Pipe Material		HDP	Ξ		Exit (Yes/No)	Yes
Welded / Flat rolled if st	teel	N	4		No of pipes	1.00
Rolled if steel		N	4		Bending angle 01	20.00
Type if steel		N	4		Bending angle 02	4.00
Burried or exposed		Burrie	d		Bending angle 03	6.00
Type of valve		Spherical/No valves	-		Bending angle 04	20.00
	ansile strength (UTS) Nmm ²		D		Bending angle 05	
Estimated pipe diameter		28			Bending angle 06	
Provided pipe diameter			-		Bending angle 07	
Min pipe thickness t (m		N			Bending angle 08	
Provided pipe thickness	st(mm)	↓ 3.	-		Bending angle 09	
Pipe Length L (m)		140.00	0		Bending angle 10	

Trashrack							
Flat v k	t	b	Vo	φ	β	Q	н
2.40	-	20.00	1.00	60.00	0.00	0.160	3.00
Expansion Joints							
Tmax (deg)	T installation	Tmin	1st Pipe length(m)	2nd Pipe L (m)	3rd Pipe L (m)	4th Pipe L (m)	5th Pipe L (m)
40	20	4	50.00	100.00	150.00	200.00	250.00
OUTPUT							
Trashrack							
hf	hb	H coeff	н	S	в	/in Submergence	OGL=1.5v^2/2g
0.0213	0.0000	0.4174	0.0213	0.8006	0.23	1.39	0.69
Turbulent loss coefficients							
Kinlet	0.80		K bend 05	0.00		K bend 10	0.00
K bend 01	0.16		K bend 06	0.00		Kvalve	0.00
K bend 02	0.13		K bend 07	0.00		Kexit	1.00
K bend 03	0.13		K bend 08	0.00		Kothers	
K bend 04	0.16		K bend 09	0.00		K Total	2.37
Hydraulics							
Pipe Area A (m^2)			0.053		U/S Inver	t Level (mAOD)	1950.000
Hydraulic Radius R(m)			0.07		D/S Inver	t Level (mAOD)	1943.000
Velocity V (m/s)			3.01		Is HL to	t < HL available	OKAY
Pipe Roughness ks (mm)			0.06		Frictio	n Losses hf (m)	3.82
Relative Roughness ks/d			0.00023		0	Losses hfit (m)	1.10
Reynolds Number Re = $d \vee Nk$			687032			l intake loss (m)	0.02
Type of Flow			Turbulent	Tota		ot individual (m)	4.94
Friction Factor f			0.0153			f individual pipe	70.56% Ok
Expansion Joints (mm)				0.0E+00		Stov ring	
EJ number	1	2	2	4	5 🚽	Packing Packing	
dL theoretical	0	0	0	0	<u>o </u>	P. Antoi	Nt ring WE's
dL recommended	0	0	0	0	0		All and a second
dL for expansion	0	0	0	0	0 1 -	enslock pipe = 11	Pens fack size
dL for contraction	0	0	0	0	O Cantra	nion officiance	Espandish joa
						⇒+R _{el}	C MAX

Figure 5.5: An example of pipe design

6 SETTLING BASINS

6.1 GENERAL

6.1.1 Sediment Settling Basins

A settling basin removes sediment (sand/silt) from water and settles down in the basin for periodical flushing back to natural rivers. Since sediment is detrimental to civil and mechanical structures and elements, the specific size of specified percentage sediment has to be trapped, settled, stored and flushed. This can only be achieved by reducing turbulence of the sediment carrying water. The turbulence can be reduced by constructing settling basins along the conveyance system. Since the settling basins are straight and have bigger flow areas, the transit velocity and turbulence are significantly reduced allowing the desired sediments to settle. The sediment thus settled has to be properly flushed back to the natural rivers.

Thus a settling basin:

- 1. Prevents blocking of headrace system assuring desired capacity of the system.
- 2. Prevents severe wearing of turbine runner and other parts.
- 3. Reduces the rate failure and O&M costs.

According to the location and function, a settling basin can be of following types:

- 1. Gravel Trap for settling particles of 2mm or bigger diameter.
- 2. Settling Basin for settling particles of 0.2mm or bigger diameter.
- 3. Forebay for settling similar to settling basin (optional) and smooth flow transition from open flow to closed flow.

Micro hydro settling basins are generally made of stone masonry or concrete with spillways, flushing gates, trashracks, etc., as and where necessary. However, functionally, all the settling basins should have following components:

- 1. Inlet Zone: An inlet zone upstream of the main settling zone is provided for gradual expansion of cross section for turbulent flow to smooth/laminar flow..
- 2. Settling Zone: A settling zone is the main part of a settling basin for settling, deposition, spilling and flushing (and trash removal).
- 3. Outlet Zone: An outlet zone facilitates gradual contraction of flow to normal condition.

A typical section of a settling basin with all the components (inlet, transition, settling and outlet zones) and accessories (spillway, gate) is presented in Figure 6.1.

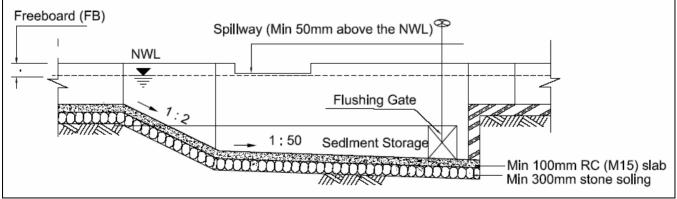


Figure 6.1: Typical section of a settling basin

6.2 SETTLING BASIN THEORY

An ideal settling basin is a basin has a flow flowing in a straight line (no turbulence, no eddy current). In practice, not a single basin is ideal. For an ideal basin shown in figure 6.3:

H/W = L/V Or, B *H /W = B*L/V Or, Ax/W = As/V

Or, Q/W = As = Surface area (i.e., the surface area is directly proportional to the discharge and inversely proportional to the settling velocity/sediment diameter/temperature).

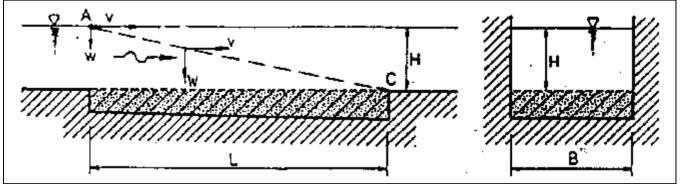


Figure 6.2: An ideal setting basin

As stated earlier a real basin never has an ideal flow. Efficiency of a real basin is generally 2 times higher than that of an ideal basin. This is mainly because of the following factors:

- 1. Presence of water turbulence in basin.
- 2. Imperfect flow distribution at entrance.
- 3. Flow convergence towards exit.

Vetter's Equation takes care of the factors stated above and hence recommended for use in settling basin design. According to Vetter's equation, trap efficiency (η) for a given discharge (Q), surface area (As) and falling velocity of critical sediment diameter (w) is:

$$\eta = 1 - e^{-\left(\frac{wA_s}{Q}\right)}$$

6.3 AEPC MGSP/ESAP GUIDELINES AND STANDARDS S

6.3.1 Gravel Trap

While designing a gravel trap, AEPC has outlined following points:

- 1. Location: Close to intake and safe.
- 2. Dimensions: Sufficient to settle and flush gravel passing through upstream coarse trashrack.
- 3. Spilling: Sufficient spillway/vertical flushing pipe.
- 4. Spilling and flushing: back to the river.
- 5. Material: 1:4 cement stone masonry with 12mm thick 1:2 cement plastering on the waterside or structural concrete of M15.
- 6. Recommended settling diameter and trap efficiency are 2mm and 90% respectively.

- 7. Sediment storage zone: Storage for 12 hours (flushing interval).
- 8. Drawdown: Drawdown discharge Capacity should be at least 150% of the design discharge.
- 9. Aspect ratio (straight length to width ratio): 1.5 to 2.

6.3.2 Settling Basin

While designing a settling basin, AEPC has outlined following points:

- 1. Location: Close to gravel trap/Intake.
- 2. Dimensions: Sufficient to settle and flush the designed sediment size.
- 3. Spilling: Sufficient spillway/vertical flushing pipe (layout dependent).
- 4. Spilling and flushing: back to the river.
- 5. Material: 1:4 cement stone masonry with 12mm thick 1:2 plastering on the waterside or structural concrete of M15.
- 6. Recommended settling diameter (trap efficiency) and head are presented in Table 6.1

Table 6.1: Settling diameter, trap efficiency and gross head

Settling diameter (mm)	Trap efficiency (%)	Gross head (m)
0.3-0.5	90%	10m
0.3	90%	10 to 100m
0.2	95%	more than 100m

- 7. Sediment storage zone: Storage for 12 hours (flushing interval)
- 8. Drawdown: Drawdown discharge capacity should be at least 150% of the design discharge.
- 9. Aspect ratio (straight length to width ratio): 4 to 10.

6.3.3 Forebay

While designing a forebay, AEPC has outlined following criteria:

- 1. Dimensions and functions: Similar to SB if u/s is open canal or the forebay functions as a combined settling basin cum forebay.
- 2. Submergence: Sufficient to prevent vortex (i.e. $1.5 * v^2/2g$).
- 3. Active Storage: At least 15 sec * Qd.
- 4. Freeboard: 300mm or half the water depth whichever is less.
- 5. Drawdown: A drain pipe/Gate.
- 6. Spilling capacity: Minimum of spilling Qd during load rejection.
- 7. Fine Trashrack:
 - a. At the entrance of the penstock
 - b. Inclination: 3V:1H
 - c. Bars: Placed along vertical direction for ease of racking).
 - d. Clearance: 0.5 * nozzle diameter in case of Pelton or half the distance between runner blade in case of Crossflow.

- e. Velocity: 0.6 to 1m/s
- f. Weight: =< 60kg (porter load)

6.4 PROGRAM BRIEFING AND EXAMPLES

6.4.1 Features of the spreadsheet

The spreadsheet is designed to cater for all types of settling basins and with all possibilities of spilling and flushing mechanisms. Some of the main features are listed below:

- 1. A single spreadsheet for:
 - a. Gravel Trap
 - b. Settling Basin (Desilting)
 - c. Forebay-cum-Settling Basin
- 2. Settling of sediment using:
 - a. Ideal settling equation
 - b. Vetter's equation
- 3. Flushing of deposited sediment during:
 - a. Normal operational hour
 - b. Drawn-down condition
- 4. Sediment flushing with:
 - a. Vertical flushing pipe
 - b. Gate
 - c. Combination of both
- 5. Spilling of excess flow due to:
 - a. Incoming flood
 - b. Load rejection
- 6. Spilling of excess flow with
 - a. Spillway
 - b. Vertical flushing pipe
 - c. Combination of both
- 7. Drawdown / Dewatering with:
 - a. Vertical flushing pipe
 - b. Gate
- 8. Rating curve for the gate: According to Norwegian Rules and Regulations of Dam Construction, a gate rating curve for the designed parameters is computed. According to this manual, the flow through gate is of free flow type until the gate opening is two third of the water depth behind the gate. Beyond this level (i.e., the gate opening hither than 2/3 of the water depth behind the gate), the flow through gate is a pressure flow.
- 9. Multiple basins
- 10. Combination of approach canal / pipe options

6.4.2 Vertical flushing pipe

1. Overflow: Acts as a sharp crested weir. Discharge through the flushing pipe having a diameter d1 is:

 $Q_f = \pi^* d1^* C_w^* hf^{2/3}$ for $C_w = 1.6$ $d_1 = Q_f / (1.6^* \pi^* hf^{2/3})$

- 2. Drawdown / Dewatering through the vertical flushing pipe: 1.5*Qd =C*A*(h_b+f_{flush})^{0.5}: A= π *d21^{2/4}: C=2.76 for L=<6m d₂₁=(6*Qd/(π *C *(h_b+f_{flush})^{0.5})^{0.5} @ full d₂₂=(4*Qd/(π *C *(f_{flush})^{0.5})^{0.5} @ empty
- 3. Design diameter: Maximum of above (d1, d21,d22)

6.4.3 Spillway at intake

hovertop = 50% of (FB – spillway crest height above NWL) Ls1 =Qf/C/h_{overtop}^{1.5}: for downstream obstruction and constant h overtop. Ls2 =2*Abs(Qf-Qd)/C/ $h_{overtop}^{1.5}$) for no downstream obstruction and average h overtop. Ls3=Qf/C/(2* $h_{overtop}^{-0.05})^{1.5}$: for downstream obstruction and constant h overtop (100%-0.05).

6.4.4 Gate

Lifting force F(kg)=W buoyant + 1000*m*Asub*hcg Gate opening dh=h1-h2 dh<2/3*h1 :=> Pressure flow (as a gate): Q=C*L*(H1^{1.5}-H2^{1.5}) dh=>2/3*h1 :=> Open flow (as a spillway): Q=C*L*H1^{1.5} Enter the maximum gate opening in the lowest gate opening cell and press the Calculate Gate Rating Curve button for computing rating curve.

Figure 6.3: Flushing pipe details

Settling Batin Design			
Spreadsheet developed by Mr. Pushpa Chitrakar, Er	ngineerin	a Advisor, SHPP/GTZ	(
Referances: 2,4, 6,9,12,13,15,16	gnooni	Date 09-Nov-2005	CILZ
		0005 40 11-1-0 (8)	SHIPP
SWALL HYDROPOWER PROMOTION PROJECT/GI			QUAL
Project: Upper Jogmai, Ilam		Location: Jogmai	
Developer Kankaimai Hydropower P Lto	d		
Consultant EPC Consult			
Designed Pushpa Chitrakar			
-			
Checked Pushpa Chitrakar			
Qflood	0.000	Sediment swelling factor S =	1.
Manning's number M(m ^{1/3} /s) 1/n=	50.000	Volume of sediment storage V (m3) =	15.
Design discharge Q_{design} (m ³ /s) =	0.421	Sediment depth Hs (m) = V/Asi	0.0
Flushing discharge Q_{hush} (m ³ /s) =	0.034	Inlet approach conveyance Canal/Pipe =	Car
Total discharge Q _{basins} (m ³ /s) =	0.455	1/Bottom slope of SB Sf (1:50 to 1:20) =	50.0
Particles to settle d (mm) =	0.300	Outlet approach conveyance Canal/Pipe =	Pi
Trapping efficiency n (%) =	85%	Water level at inlet NV/L (m) =	1950.
water temperature t (°C) =	15	h flush below the base slab (L<6m)	1.1
Fall velocity wat 15 deg C (m/s) =	0.037	Number of basins N	1.0
Sediment concentration Cmax (kg/mB) =	2	Spillway crest height above NWL m	0.0
Flushing Frequency Fl (hours) =	8	Spilway discharge coeff	1.6
Surface area / basin Asi (m2) 85 % =	24.000	Provided Freeboard h fb1 m	0.3
Basin transit velocity Vt (m/s) =	0.241	Discharge coeff for pipe as orifice (2.76 if L <6 m)	2.7
Bulk Sed density $G(kg/m3) =$	2600	Drawdown discharge % of design discharge	1.0
Discharge per basin Q_{asin} (m ³ /s) =	0.455	Water depth of inlet canal hc1 (m) =	0.9
Max section width for hydraulic flushing B (m) =	3.258	Outlet canal width /canal diameter Bc2 (m) =	0.5
Width used B (m) =	2.500	Water depth of outlet canal hc2 (m) =	0.3
Inlet canal width / canal diameter Bc1 (m) =	1.000	Provided Length of the basin Lact (m)=	0.0
Length of basin L (m) (Idel L = 9.6) =	10.000	Pipe does not need a straight approach!	***
Aspect ratio (4<=AR<=10)	4.000	Head over outlet weir h overtop (m) =	0.2
Min. water depth Hi (m) =	0.755	Approach inlet velocity vi1 (m /s) =	0.9
X-sectional area / basin Ai (m^2) =	1.888	Approach outlet velocity vi2 (m/s) =	3.0
Wetted perimeter / basin Pi (m) =	4.010	1/Energy gradient during operation So =	
Hydraulic radius Ri (m) =	0.471	d 50 during operation (mm) =	0.3
Normal WL @basin h b m=	1.385	Depth of water during flushing vfi (m) =	0.1
Straight inlet transition length at 1:5 (m) =	3.750	d 50f during flushing (mm) =	49.3
Straight approach canal length (m) =	10.000	Length of an Ideal Basin (m) =	10.0
Spilling of excess water			
Vertical Flushing pipe			
Diameter for flood d1 m=	0.000	Diameter for load rejection (u/s flood bypass) d1 m=	2 x 0.43
Spillway			
Freeboard m	0.300	Spillway length for Qd (under operation)	6.
Spillway overtopping height h overtop m		illway length for Qd (load rejection & u/s flood bypass)	6.
Spillway length for Qf (flood and non operational)		illway length for Qd (d/s obstruction & full hovertop-50)	3.
Combination of vertical flushing pipe and spillway	,	Flood and non operational (Qf)	
Vertical flushing pipe diameter d1 m	0.30	Flood discharge passing through vertical pipe	0.0
No of vertical flushing pipe	1.00	Spillway length for the remaining discharge m	1.
Spillway length used (m)	1.00		
Flood and Under Operation (Qf- Qd)		Load Rejection (Qd)	
Hovertopping	0.00	Hovertopping	0.2
Discharge passing through vertical pipe	0.00	Discharge passing through vertical pipe	0.2
Discharge passing ver spillway	0.00	Discharge passing ver spillway	0.2
Lisu aiye passi iy wei spilway	0.00		0.2

Figure 6.4: Typical example of a settling basin (Settling basin, spilling and flushing).

d for incoming flow and draw down m	0.35
d for incoming flow only (empty state) m	0.40
ncoming flow only (empty state & with y flushing) m	0.39
Gate	
Buoyance weight of the gate W kgf	300.00
Gate Opening B, (m)	1.00
Gate Opening H (m)	0.50
Submerged area of th gate A m2	0.50
Water surface to cg of submerged area h m	1.11
Coeff of static friction mu	0.90
Lifting force F kgf	799.50
H. of water (H1)	1.36

Calculate Gate Rating Curves								
Gate	Relative	Discharge						
Opening	Gate Openinig	One basin						
Hg	Hg/H1	Q						
0.000	0.000	0.000						
0.033	0.025	0.127						
0.067	0.049	0.249						
0.100	0.074	0.366						
0.133	0.098	0.479						
0.167	0.123	0.591						
0.200	0.147	0.700						
0.233	0.172	0.807						
0.267	0.196	0.912						
0.300	0.221	1.016						
0.333	0.245	1.117						
0.367	0.270	1.216						
0.400	0.294	1.312						
0.433	0.319	1.406						
0.467	0.343	1.497						
0.500	0.368	1.586						

Figure 6.5: Typical example of a settling basin (Gate and rating curve).

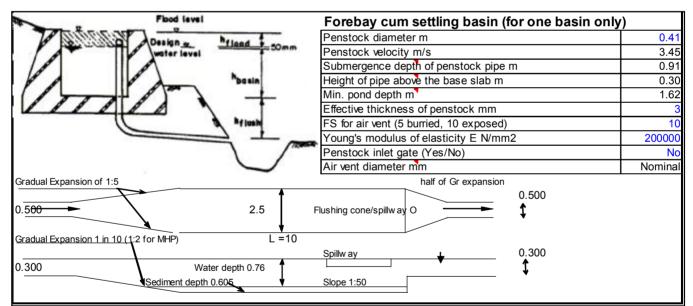


Figure 6.6: Typical example of a settling basin (forebay and dimensioning).

The settling basin calculations presented in Figure 6.6 are briefly described in the following section.

Sizing of settling basin

1. Settling of sediment using:

```
a. Vetter's equation

Surface area of basin = -(Q_{total})/w^*LN(1-n_{eff})

Asi = -(0.455)/.035^*LN(1-n_{eff})

= 25 m^2

Max section with for hydraulic flushing = 4.83^*Q^{0.5}

= 4.83^*.455^{0.5}

= 3.258m
```

Provided Width B	= 2.5m
Length of basin L	= Asi/B = 25/2.5 = 10m, which is 4 times the width hence, satisfies the requirement.
Basin transit velocity	vt = 0.44* sqrt(d) = 0.44*sqrt(0.2) = 0.241m/s
Water depth Hi	= Qi/B/vt = 0.455/2.5/0.241 = 0.755m
	<pre>ume assuming 100% trap efficiency (conservative side) / = (Q_{total})*(Flushing intensity in sec)*Concentration max in kg/Bulk Sed. Density in kg/m³/Sed Swelling factor = (Q_{total})*(Fl*3600)*Cmax/G*S = 0.455*(8*3600)*2/2.6*1.5 = 15.12m³</pre>
Sediment depth Hs	= V/Asi = 15.12/25 = 0.6m
b. Ideal settling e	quation

Length of an Ideal Basin= Maximum of (4xB and Q/B/w)

- = MAX(4*2.5, 0.455/2.5/0.035) = MAX(10, 5.2) = 10 m
- 2. Spilling of excess flow due to load rejection: A combination of a 0.3m diameter vertical pipe and spillway of 1.0m length is used.

H overtopping	= h ot =(Q1/(1.9*PI()*n1*d1+Cd*Ls))^(2/3) = (0.455/(1.9*pi()*1*.3+1.6*1))^(2/3) = 0.262 m
Q pipe	= 1.9*PI()*n1*d1*h ot ^1.5 = 1.9*pi()*1*.3*0.262^1.5 = 0.240 m³/s
Q spillway	= Cd*Ls*h ot ^1.5 = 1.6*1*0.262^1.5 = 0.215 m ³ /s

- 3. Flushing of deposited sediment through the flushing pipe: The pipe diameter will be the biggest of :
 - a. For incoming flow and draw down: D1 = (Qflushing%*4*Qi/(PI()*Cd*SQRT(h NWL+h flush)))^0.5 = (100%*4*0.455/(pi()**2.76*SQRT(1.36+1.7)))^0.5 = 0.35m
 - b. For incoming flow only:

D2 = $(4*Qi/(PI)*Cd*SQRT(h flush)))^{0.5}$

= (4*0.455/(pi()**2.76*SQRT(1.7)))^0.5 = 0.4m In the second case the depth of water during flushing yfi may be added to h flush for higher precision. This is not considered here. The recommended minimum diameter of the flushing pipe diameter is 0.4 m.

The gate curve in the example presented in Figure 6.6 includes the gate dimensions, forces and the rating curve. The rating curve of the gate versus different gate opening can be computed by entering allowable gate opening at the lowest input cell and clicking "Calculate Gate Rating Curve" button.

The last part the spreadsheet can be used if the considered basin is a settling basin cum forebay. The basic penstock inlet geometry is computed in this section.

7 PENSTOCK AND POWER CALCULATIONS

7.1 GENERAL

A penstock pipe conveys water from free flow state (at a settling basin or a forebay) to pressure flow state to powerhouse and converts the potential energy of the flow at the settling basin or forebay to kinetic energy at the turbine.

7.2 AEPC MGSP/ESAP GUIDELINES AND STANDARDS

- 1. Material: Mild steel (exposed and buried) and HDPE (buried) pipes should be used as penstocks pipes.
- 2. For exposed (i.e., above ground) mild steel penstock alignment, a minimum clearance of 300 mm between the pipe and the ground should be provided for maintenance and to minimise corrosion effects.
- 3. HDPE pipes should be buried to a minimum depth of 1 m. Similarly, if mild steel penstock pipes have to be buried, a minimum of 1 m burial depth should be maintained and corrosion protection measures such as high quality bituminous/epoxy paints should be applied. Due to higher risks of leakage, flange connected penstocks are not recommended to be buried.
- 4. The recommended initial trail internal diameter (D) can be calculated as:

$D = 41 \text{ x } Q^{0.38} \text{ mm}$

Where, Q = Design flow in I/s

- 5. Total penstock headloss should be limited to 10% of the penstock gross head.
- 6. Anchor / Thrust block at every horizontal and vertical bends and for every 30m of straight pipe stretch.
- 7. Expansion joints should be placed immediately downstream of every anchor block for exposed mild steel penstock.
- 8. In stead of providing an expansion joint immediately upstream of turbine, a mechanical coupling is recommended for ease of maintenance and lesser force distribution to the turbine casing.

7.3 PROGRAM BRIEFING AND EXAMPLE

7.3.1 Program Briefing

The design procedure of a penstock is similar to that of a headrace pipes. In this spreadsheet, the penstock is checked against surge / water hammer head propagated due to various closures of the system. Sudden closure of one jet is considered as the critical surge.

Both the installed capacities based on the AEPC criteria and actual cumulative efficiency of the electromechanical are presented.

Since a provision of maximum of ten bends is generally sufficient for a typical micro hydropower scheme, head losses due to ten bends only are incorporated. However, users can add any cumulative values if there are more than ten bends or other losses due to turbulence in the "K others" cells.

A fine trashrack is always recommended upstream of penstock inlet. Therefore, a trashrack calculation is included with the minimum submergence criteria by Gordon and AEPC criteria. AEPC criterion of 150% of the velocity head is enough for micro hydropower project up to 100kW.

User specific factor of safety and ultimate tensile strength for mild steel penstock are allowed in the spreadsheet.

The friction factor calculation is based on the iteration procedures described in the Layman's Guidebook on How to Develop a Small Hydro Site by European Small Hydropower Association (ESHA).

Design and installation criteria of expansion joints are presented at the end of the spreadsheet.

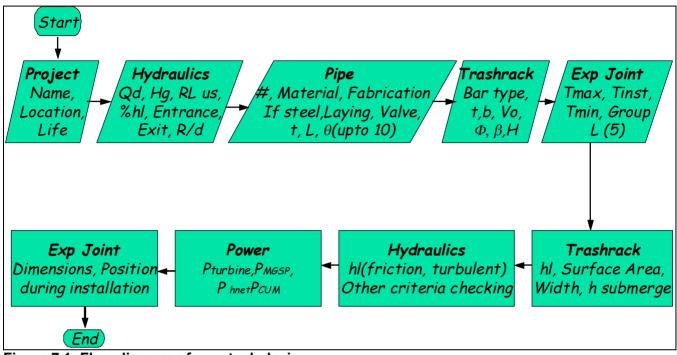


Figure 7.1: Flow diagram of penstock design

7.3.2 Typical example of a penstock pipe

Figure 7.1 presents calculation procedures applied in the example presented in Figures 7.2 and 7.3. For the given head of 180m and discharge of 450 l/s, three units of two-nozzle Pelton turbines are selected. Since trashrack and pipe hydraulics are similar to headrace pipe presented earlier, the detailed calculations are not presented in this section. The steel pipe thickness, expansion joints and power calculations are presented in this section. It is assumed that the valve closing is of slow type. The minimum factor of safety for penstock is chosen to be 2.5.

Pipe thickness:

It is worth noting that in reality the diameter of penstock pipe is optimized by calculating marginal costs and benefit method. In this method, the incremental benefit of annual energy by increasing the pipe diameters and corresponding increase of costs are plotted. The intersecting point represents the cost of optimum diameter. Alternatively, net present values of these cash/cost flow can be calculated and the net present value (NPV) of marginal benefit from energy gain should be higher than that of the marginal cost of that diameter.

Let's consider 4mm thick 300mm diameter pipe, the wave velocity

$$a = \frac{1440}{\sqrt{1 + \left(\frac{2.1 \times 10^9 \times d}{E \times t}\right)}} = \frac{1440}{\sqrt{1 + \left(\frac{2.1 \times 10^9 \times 0.300}{200 \times 10^9 \times \frac{6}{1000}\right)}}} = 1071.454 \, m/s$$

= a * V/(g*njet)

 $= 1071.454 \times 2.83 / (9.81 \times 6)$

h_{surge}

= 51.484m $h_{total} = h_{gross} + h_{surge}$ = 180+51.484 = 231.484 m $t_{effective} = t/(welding factor*rolling) - thickness for corrosion taken as Life span/10$ = 6/(1.1*1.2) - 1.0 = 3.55mmFactor of safety (allowable FS = 3.0)

$$S.F. = \frac{t_{effective} x S}{5 x h_{total} x 10^3 x d} = \frac{(3.55/1000) x 410 x 10^6}{5 x 231.484 x 10^3 x 0.450}$$

= 2.79 which does not exceed the allowable FS of 2.5, hence OK. This factor of safety should be used for thinner penstock.

		PENSTOC	K AND POW	ER CALCUL	ATIONS		
Spreadsheet developed by Mr. P	ushpa Chitrakar	, Engineering A	Advisor, SHPP/GTZ				0
Referances: 2,4, 5,6,12, 13, 15, 16					Date	10-Nov-2005	gu.
SMALL HYDROPOWER PROVIC		/GIZ			Revision	2005.10	SHPP
Project:	Jhankre mini	-hydropowei	r	Location:	Barand, Ser	tung VDC 2,	Dhading
Developer	Himal Power				,,		
Consultant	BPC Hydroc						
Designed	Pushpa Chitr						
0	· · · · · · · · · · · · · · · · · · ·						
Checked	Pushpa Chitr	akar					
INPUT							
General:							
Project:	Jogmai I						
Location:	llam				Econo	mic life (years)	1
Hydraulics:					200110		
Diversion flow Qd (m3/s)			0.450	WL@	forebay or U/S	Invert Level (m)	1213.9
Flow in each pipe Qi (m3/s)			0.450		head allowable I	()	16.00%
Gross head (from forebay) Hg (m)			180.00	Cumulative	79.38%		
Power:	,						
Turbine type (CROSSFLOW/PELTON)			Pelton		Valves (Sperica	/Gate/Butterfly)	Butterfly
No of total jets (nj)			6			Taper (Yes/No)	N
Direct Coupling (Yes/Nb)			Yes			Exit (Yes/Nb)	N
Closure time T sec			30.00	Non standard u	lt. tensile strengt		
Number of units			3		0		
Penstock pipe:							
Pipe Material (STEEL/HDPE/PV0	C)		Steel	Safety facto	or for lower pipe	s (0 for default)	2.
Welded / Flat rolled if steel			Welded		••	Entrance Type	Sharp cornered
Rolled if steel			Rolled	Entrance	with gate and ai	r-vent (Yes/No)	N
Type if steel (UNGRAGED/IS)			IS	Bending radius (r/d) (1/2/3/5/1.5)			1.5
Burried or exposed			Exposed	Bending angle 05			2
No of pipes			1.00		14.0		
Bending angle 01(degrees)			2.00		Be	ending angle 07	0.0
Bending angle 02			11. 0 0	Bending angle 08			0.0
Bending angle 03			4.00		0.0		
Bending angle 04			11.00		Be	ending angle 10	0.0
Penstock diameter d=>d estd, d a	act (mm)	418	▲ ▶ 450	Pipe thickness t=>t	4 F 6		
Pipe Length L (m)		550.000		Roughness coeffici	ent (ks)		0.06
Trashrack							
k	t	b	Vo	ф	β	Q	н
Rat 💌	6.00	20.00	1.00	71.56	0.00	0.450	0.70
Expansion Joints			1 1		1		
Tmax (deg)	T installation	Trrin	1st Pipe length(m)	2nd Pipe L (m)	3rd Pipe L (m)	,	5th Pipe L (m)
40	20	4	10.00	15.00	20.00	25.00	30.00

Trashrack	1		1	1	<u> </u>		/in Submergence	CGL=1.5v^2/2
hf	hb	H coeff	Н	S		В	All Submergence	CGL-1.3V 2/2
0.0233	0.0000	0.4572	0.0233	2.0555	5	2.79	1.84	0.61
Turbulent loss coefficients	K Total	2.06	5					
Kinlet	0.50		K bend 05		0.24		K bend 10	0.00
K bend 01	0.18		K bend 06		0.22		K valve	0.30
K bend 02	0.21		K bend 07		0.00		K taper	0.00
K bend 03	0.19		K bend 08		0.00		Kexit	0.00
K bend 04	0.21		K bend 09		0.00		K others	0.00
Hydraulics								
Pipe Area A (m ²)			0.159			U/S li	nvert Level (mAOD)	1213.90
Hydraulic Radius R (m)			0.11			D/S li	nvert Level (mAOD)	1033.90
Velocity V (m/s)			2.83			ls I	-Ltot < HL available	OKAY
Pipe Roughness ks (mm)	•		0.060			Fri	ction Losses hf (m)	6.87
Relative Roughness ks/d			1.333E-04	•		Fit	ting Losses hfit (m)	0.84
Reynolds Number $Re = d V / Vk$			1116427		Ti	ashracks	and intake loss (m)	0.02
Type of Flow			Turbulent		Total	Head Los	s htot individual (m)	7.73
Friction Factor f	•		0.0138		0	% of H.Los	ss of individual pipe	4.3% O
Factor of Safety			-	1				
Young's modulus of elasticity E	√mm ²		200000		Utimate	tensile stre	ength (UTS) N/mm2	410
Thickness			6.000		H total fo	r one jet c	losure of Pelton(m)	231.48
Diameter (mm)			450.000				t effective (mm)	3.55
Net Head (m)	•		172.268	Minimum	nteffictiv	e for nega	ative pressure (mm)	4.71
Wave Velocity a (m/s)	•		1071.454			Cor	mment on thickness	NA, No gate
Critical time Tc (sec) *2 = Closin	g time T		1.03 Ok				Safety Factor (S)	2.79
K if crossflow turbine Kcf	Ť		0.00000			Chec	ck on Safety Factor	Q
Hsurge for one jet closure of Pel	ton(m)		51.484			Air vent dia	ameter d vent (mm)	67.45
Hsurge for instanteneous closure	of all unit closu	ure of Pelton (m	n 308.907	'Ht	total capa	icity of the	e specified pipe (m)	258.42
Lengths (max & actual) of the sp	ecified pipe (m)	613.998	550.000	Hst	atic capa	icity of the	e specified pipe (m)	206.94
Power								
Turbine efficiency as per MGSP	•		75.00%	E	ectrical F	Power as p	per MGSP GL (kW)	397.31
Available shaft power(kW)		570.36	Electrical Power based on Hnet (kW)			456.29		
Reqd.'Turbine Capacity (+10%)	(kW)	1	627.39		Power f	or known o	cumulative eff (kW)	603.67
Expansion Joints (mm)		Coeff of linear	l r expansion /deg C	; 1	1.2E-05		Stoy ring	
EJ number	1	2	2	4	1	5	Relain	wring . Weld
dL theoretical	4	6	9	11		13	N Land A Marine	
dL recommended	9	13	17	22		26	Constant of the	Penstack alar
dL for expansion	5	7	10	12		14	Pensiock pige will Contropies o swance	Woll Expression goo
dL for contraction	4	6	8	10		12	Dr.	ie abduar op daa

Figure 7.3: Output of penstock and power calculation spreadsheet.

Based on the American Society of Mechanical Engineers (ASME) formula, the allowable thickness is 3.00 mm. Therefore, optimum penstock thickness can vary from 3mm to 6mm. The summary of the penstock thickness corresponding to static head is presented in Table 7.1.

Table 7.1: Summary of penstock thickness and corresponding static head

Penstock thickness (mm)	Static Head (m)
3	40
4	86
5	132
6	180

8 TURBINE SELECTION

8.1 GENERAL

A turbine converts potential energy of water to rotational mechanical energy. Cross-flow and Pelton turbines are the most commonly used turbines in Nepali micro hydropower plants. The size and type of turbine for a particular site depends on the net head and the design flow. Pelton turbines are suitable where the ratio of head to flow is high whereas Cross-flow turbines are suitable for high flow and low head schemes. It should be noted that for certain head and flow ranges, both Pelton (multi-jet) and Cross-flow turbines may be appropriate. In such cases, the designer should consult with manufacturer and make a decision based on availability, efficiency and costs. On a horizontal shaft Pelton turbine the maximum number of jets should be limited to 3 for ease of manufacturing. The number of jets can be higher for vertical shaft Pelton turbines. However, these require higher precision work in mounting the generator vertically on the turbine shaft and furthermore, in case of varying rotational speeds (RPM of the turbine and the generator), the belt drive arrangements (including those for mechanically coupled end uses) will be difficult.

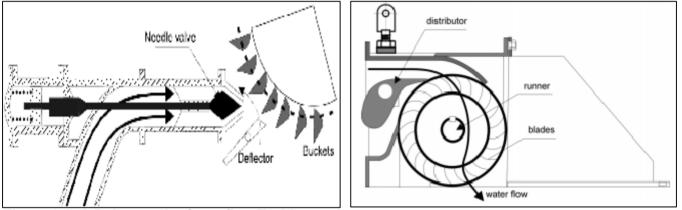


Figure 8.1: A Pelton and a Crossflow Turbines

8.2 AEPC MGSP/ESAP GUIDELINES AND STANDARDS

The recommended net heads for maximum rotational speed (rpm) and efficiencies for different turbines and turbine specifications are presented in Table 8.1.

Туре	Net head (m)	Max RPM	Efficiency (n _t)
Pelton	More than 10m	400 to 1500	70 - 75%
T12 Crossflow	up to 50m	900	60 - 78%
T15 Crossflow	up to 80m	1500	60 - 78%

The type of turbine can be determined by its specific speed given by the following equation:

Sp Speed (no gear) n_s = Turbine rpm* $\sqrt{(1.4*P_{kW}/N_{turbines})/Hn^{5/4}}$

Sp Speed (gear) n_{sg} = Sp Speed (no gear)* Turbine rpm / Generator rpm

The only unknown in the above equation is the turbine rotational speed ($N_{turbines}$). This depends on the RPM of generators and drive systems (e.g., direct or belt drive). The specific speed of a multi-jet Pelton turbine can be computed by multiplying n_s by the square root of number of jets. Because of higher efficiency both in overall and part load, preference should be given to Pelton turbines. If n_s exceeds the range given in Table 8.2, multiple units should be used.

Table 8.2: Turbine type vs. n_s

Turbine types	n _s Ranges
Single Jet Pelton	10 – 30
Double Jet Pelton	30 – 40
Three Jet Pelton	40 – 50
Cross flow	20 - 80

8.3 PROGRAM BRIEFING AND EXAMPLE

With a typical example, the "Turbine" spreadsheet is presented in Figure 8.2. The specific speeds (n_s) with (gear ratio of 1:2) and without gear are calculated as:

Sp Speed (no gear) n_s = Turbine rpm* $\sqrt{(1.4*P_{kW}/N_{turbines})/Hn^{5/4}}$ = 750*SQRT(1.4*67.89/1)/58^(5/4) = 46 (Turgo/Crossflow/2-jet Pelton is suitable)

Sp Speed (gear) n_{sg} = Sp Speed (no gear)* Turbine rpm / Generator rpm = 46*1/2 = 23 (Single jet Pelton/Crossflow is suitable)

Specific speed of multi-jet Pelton turbines is computed by multiplying the specific speed of runner by the square root of the number of the jets. The calculations show that for the given parameters in the context of micro hydro plants in Nepal, either a gearless Crossflow turbine or a Pelton/Crossflow with a gear ratio of 1:2 is recommended.

Turbine Selection			
Spreadsheet developed by Mr. Pushpa	a Chitrakar, Eng	ineering Advisor, SHPP/GTZ	1
Referances: 6,7,8,12,13	Date	10-Nov-2005	gu)
SMALL HYDROPOWER PROMOTION	Revision	2005.10	SHPP
Project	Upper Jogm	ai, Ilam	
Developer	· · · · · · · ·	vdropower P Ltd	
Consultant	EPC Consult		
Designed	Pushpa Chitr		
Checked	Pushpa Chitr		
Input	Γ		
Discharge (I/s)	150	Gear ratio at turbine	1
Gross head (m)	69	Gear ratio at generator	2
Hydraulic losses	15.94%	No of turbines/generators	1
Max turbine output kW	67.89	Total number of jets if Pelton n	2
Turbine rpm	750	Specified turbine	Pelton
Cd	0.96	Cu	0.46
Output			
Net head m	58.001	Generator with gearing rpm	1500
	-		
No Gearing		With Gearing	
Sp speed of runner rpm (no gearing)	46	Sp speed of turbine	23
Pelton (12-30) => (Ns 17-42)	**	Pelton (12-30) => (Ns 17-42)	Pelton
Turgo (Ns 20-70) => (Ns 28-99)	Turgo	Turgo (Ns 20-70) => (Ns 28-99)	**
Crossflow (Ns 20-80)	Crossflow	Crossflow (Ns 20-80)	Crossflow
Fracis (Ns 80-400)	**	Fracis (Ns 80-400)	**
Propeller or Kaplan (Ns 340-1000)	**	Propeller or Kaplan (Ns 340-1000)	**
Figure 8.2: A Typical turbine example).		

9 ELECTRICAL EQUIPMENT SELECTION

9.1 GENERAL

A generator converts mechanical energy to electrical energy. There are two types of generators; namely, synchronous and induction (asynchronous). Generally, induction generators are inexpensive and appropriate for Nepali micro-hydro schemes up to 15kW. For micro-hydro schemes ranging from 10kW to 100kW, synchronous generators are technically and economically more attractive. Both synchronous and asynchronous generators are available in single and three phases.

Load controllers are generally used as the governing system in Nepali micro hydro schemes. An Electronic Load Controller (ELC) is used for controlling power output of a synchronous generator. To control an induction generator, an Induction Generator Controller (IGC) is used.

9.2 SELECTION OF GENERATOR SIZE AND TYPE

Selection of generator size mainly depends up on the loads of a proposed site. Selection of generator type depends on the size of the selected generator, nature of the proposed loads and financial costs and benefits of the scheme. As stated earlier, a generator type can be either synchronous or induction of either single or three phase. Some of the main features of all types of generator are outlined in the following sections:

9.2.1 Single Phase versus Three Phase System

Advantages of a Three - Phase System

- Considerable saving of conductor and machine costs.
- Cheaper above 5 kW.
- Less weight by size ratio.

Advantage of a Single – Phase System

- Simple wiring.
- Cheaper ELC.
- Problem due to unbalanced load is not present.

9.2.2 Induction versus Synchronous Generators

Induction Generators

Advantages of Induction Generators:

- Easily availability
- Cheap, rugged and simple in construction
- Minimum Maintenance

Drawbacks of Induction Generators:

- Problem supplying large inductive loads.
- Less durability of capacitor bank.
- Poor voltage regulation compared to synchronous generators.

Synchronous Generators

Advantages of Synchronous Generators:

- High quality electrical output.
- Higher efficiency.
- Can start larger motors.

Drawbacks of Synchronous Generators:

- The cost is higher than induction generator for small sizes.
- Higher losses due to unbalanced load.

9.3 AEPC MGSP/ESAP GUIDELINES AND STANDARDS

Based on the major features, general guidelines for selection of phase and type of generator are prepared and summarized in Table 9.1.

Table 9.1: Selection of Generator Type

Size of scheme Up to 10 kW		10 to 15 kW	More than 15 kW
Generator Synchronous/Induction		Synchronous/Induction	Synchronous
Phase	Single or Three Phase	Three Phase	Three Phase

Maximum ambient temperature, powerhouse altitude, electronic load controller correction factor and power factor of the proposed loads are the major factors affecting the size of a generator. De-rating coefficients to allow for these factors are presented in the Table 9.2.

Table 9.2: Generator rating factors

Max. Ambient temperature in °C =>	20	25	30	35	40	45	50	55
Temperature Factor (A)	1.10	1.08	1.06	1.03	1.00	0.96	0.92	0.88

Altitudes	1000	1250	1500	1750	2000	2250	2500	2750	3000	3250	3500	3750	4000	4250	4500
Altitude Factor (B)	1.00	0.98	0.96	0.945	0.93	0.915	0.90	0.88	0.86	0.845	0.83	0.815	0.8	0.785	0.77

ELC Correction Factor (C)

0.83

Power Factor (D)	For light bulb loads (inductive) only	1.0
	For mixed loads of tube lights and other inductive loads	0.8

9.3.1 Sizing and RPM of a Synchronous Generator:

The steps for selecting the size of a synchronous generator are as follows:

- 1 Power factor of 0.8.
- 2 The size of synchronous generator (kVA):

Installed Capacity in kW Generator (kVA) = 1.3*------A x B x C x D

Where, A, B, C and D are correction factors from Table 9.2, and 1.3 is the 30% overrating factor (recommended) to allow for:

- i) Unexpected higher power from turbine.
- ii) Handling of starting current if large motors (> 10% of generator size) are supplied from the generator.
- iii) The generator running at full load when using an ELC.
- 3 The synchronous rotational speed per minute:

Rotational speed (N)(rpm) =
$$\frac{120f}{P}$$

Where,

- f = frequency of the system in Hertz (Hz) (50 Hz in Asia and Europe)
- P = number of poles of the generator (2, 4, 6, etc., in pairs). P for Nepali micro-hydropower schemes is generally 4 so that the rotational speed is 1500 RPM.

9.3.2 Sizing and RPM of an Induction Generator:

The steps for selecting the size of an induction generator are as follows:

1 The size of an induction generator (kW):

It is worth noting that an induction generator is basically a motor in nature. Similar to motor rating, the rating of an induction generato should be in kW. Therefore, ELC factor (C) and the power factor (D) corrections are not applicable for an induction generator. Other factors are applied similar to a sychronous generator. Generator voltage and current ratings should not exceed 80% of the electrical motor rating.

2 The rotational speed of an induction generator:

Rotational speed (Ni)(RPM) = $\frac{120f}{P}(1+s)$

Where,

P and f are the same as for synchronous generator and

s is the slip of the generator,

Where,

N_s is the synchronous speed, i.e. $Ns(RPM) = \frac{120f}{P}$

 $s = \frac{Ns - Nr}{Nc}$

Nr is the rated rotor speed of the induction motor and Ni always exceeds Ns while acting as a generator.

9.4 PROGRAM BRIEFING AND EXAMPLES

9.4.1 **Program Briefing**

In addition to calculating electrical parameters stated above, following electrical parameters are added to the presented "Electrical" spreadsheet:

- 1 Computation of excitation capacitance for an induction generator.
- 2 Sizing of electrical load controller (ELC) or induction generator controller (IGC) (equal to the installed capacity).
- 3 Sizing of ballast (20% higher than the installed capacity). In case the installed capacity exceeds or equal to 50kW, the ballast capacity of ELC-Extension is calculated as:

Ballast capacity of ELC extension (kW) = 60% * 1.2 * Pe (electrical power)

Fixed load = 40% * Pe (electrical power)

- 4 Sizing of MCCB/MCB.
- 5 Sizing of power cables.

1. Sizing of excitation capacitance of an Induction Generator

Excitation capacitance for Delta connection C (μ F) = 1/(2*pi()*f*Xc* η_m)

1000*Pe* sin (cos⁻¹ (power factor))

Or, C (цF) = -----

3*V²*pf*2*pi()*f*η_m

Where,

 $Xc(\Omega) = V / I_m$

V(V) = Rated Voltage of the motor (V) (phase to phase voltage, 380/400/415)

 $I_m(A)$ = Magnetizing Current = I rated at full load current (A) * sin (cos⁻¹ (power factor))

I rated at full load current = Rated power (kW) * 1000/(V*pf)

 η_m = rated efficiency of motor at full load

For star connected capacitors, the excitation capacitance is three times that for the Delta connection.

2. Sizing of MCCB/MCB (A) = 1.25*Pe * 1000/(V*pf)

Where,

1.25 = overrating factor by 25%.

Pe (kW)= Installed capacity

V(V) = Rated phase to neutral Voltage (V) (V* $\sqrt{3}$ for 3-phase)

pf = power factor if induction generator is used

3. Sizing of power cable (A) = 1.7*I

Where,

- 1.70 = overrating factor by 70%.
- I (A) = Current = Generator size/(V *pf if induction generator is used)
- V (V) = Rated phase to neutral Voltage (V) (V* $\sqrt{3}$ for 3-phase)
- pf = power factor

9.4.2 Typical example of a 3-phase 60kW synchronous generator

Electrical component calculations for an example of a three-phase 60kW synchronous generator at an altitude of 1500m are presented in Figure 9.1. The detailed step-by-step calculations are:

The size of synchronous generator:

Installed Capacity in kW Generator kVA = 1.3^* ------A x B x C x D = $1.3^*60.04/(0.96^*0.96^*0.83^*0.8)$ = 127.70 kVA

The higher size available in the market of 45kVA is used.

Rotational speed(N) = $\frac{120f}{P}RPM$ =120*50/4 = 1500 rpm

Since Pe > 50kW, the ballast capacity of ELC extension (kW) = 60% * 1.2 * Pe + 40% * Pe = 0.6*1.2*60.04 + 0.4*60.04 = 67.24 kW

Selection of Electrical Equ	uipmen	t	
Spreadsheet developed by Mr. Pushpa	Chitrakar,	Engineering Advisor, SHPP/GTZ	0
Referances: 6,7,8,12,13	Date	11-Nov-2005	gu)
SMALL HYDROPOWER PROMOTION I	Revision	2005.10	SHPP
Project		ogmai, Ilam	
Developer		ai Hydropower P Ltd	
Consultant	EPC Co		
Designed		Chitrakar	
Checked		Chitrakar	
INPUT			
Discharge (m³/s)	0.204	Power factor	0.
Gross head (m)	60.000	Safety factor of generator	1.
Overall plant efficiency (%)	50%	Phase	3-phase
Temperature (°C)	45	Type of Generator	Synchronous
Altitude (m)	1500	Over rating factor of MCCB	1.2
ELC correction factor	0.83	Over rating factor of cable	1.
Frequency of the system (Hz)	50	No. of poles	
Capacity of used generator (kVA)	C	Rated rotor speed if induction generator N (rpm)	
	Delta		
OUTPUT			
Pe Electrical output (active power) (kW	60.04	Ok	
Generator			
Temp.factor	0.96	Altitude factor	0.9
Capacity (kVA)	127.70	Actual available capacity (kVA)	140.0
Synchronous rotational speed Ns (rpm)	1500		
ELC capacity (kW)	60.04	Calculated Ballast capacity 1.2*Pe (kW)	72.0
	00.04	Ballast capacity of ELC-Extention (kW)	67.2
Rated Voltage (V)	400	I _{rated} for Cable & MCCB (A) at Generator side	202.0
Rating of MCCB (A)	108.32	Calculated size of MCCB (A)	135.4
Cable			
		Size of 4-core cupper armoured cables	18

I _{rated} for Cable & MCCB at Generator side = 1000/ V _{rated} * Generator size /1.732 = 1000 / 400*140/1.732 = 202.08 Amp

Calculated size MCCB/MCB (A) = 1.25*Pe * 1000/(V*pf) = 1.25*60.04*1000/(400*1.732*0.8) = 135.40 Amp Power cable inside the powerhouse

Rating current = 1.5*I_{rated} = 1.5*202.08 = 303.12 Amp

For this current a 4-core copper armoured cable of ASCR 185mm² is chosen.

9.4.3 Typical example of a single phase 20kW induction generator

Figure 9.2 present electrical equipment sizing of the previous project with a single phase induction generator with a rotor speed of 1450rpm. Since the electrical output is more than 10kW, a reminder error is flagged in the adjacent cell. The electrical components presented in Figure 9.2 are computed as:

The size of the asynchronous generator:

The higher size available in the market of 30kW is used.

Rotational speed (N) =
$$\frac{120f}{P}$$

=120*50/4
= 1500 rpm

Rotational speed of a generator = Ns*(1+(Ns-N)/Ns) = 1500*(1+(1500-1450)/1500) = 1550 rpm

Excitation capacitance

 $C (\mu F) = \frac{1000^{*} \text{Pe}^{*} \sin (\cos^{-1} (\text{power factor}))}{3^{*} \text{V}^{2*} \text{pf}^{*} 2^{*} \text{pi}()^{*} \text{f}^{*} \eta_{\text{m}}}$ $C (\mu F) = \frac{1000^{*} 20^{*} \sin (\cos^{-1} (0.8))}{3^{*} 400^{2*} 0.8^{*} 2^{*} \text{pi}()^{*} 50^{*} 0.89}$ $= 123.16 \ \mu F$ $I_{\text{rated}} \text{ for Cable & MCCB at Generator side} = 1000/ V_{\text{rated}}^{*} \text{ Generator size /pf}$ $= 1000 / 220^{*} 30 / 0.8$ $= 170.45 \ \text{Amp}$

Power cable inside the powerhouse

Rating current	= 1.5*I _{rated}
-	= 1.5*170.45
	= 255.68 Amp

For this current a 2-core copper armoured cable of ASCR 185mm² is chosen.

Selection of Electrical Equ	uipmen	t	
Spreadsheet developed by Mr. Pushpa	- Chitrakar,	Engineering Advisor, SHPP/GTZ	0
Referances: 6,7,8,12,13	Date	11-Nov-2005	GZ)
SMALL HYDROPOWER PROMOTION I	Revision	2005.10	SHPP
Project	Ubper J	ogmai, Ilam	
Developer		ai Hydropower P Ltd	
Consultant	EPC Co		
Designed		Chitrakar	
6			
Checked	Pushpa	Chitrakar	
INPUT			
Discharge (m ³ /s)	0.08	Power factor	3.0
Gross head (m)	50.968	Safety factor of generator	1.3
Overall plant efficiency (%)	50%	Phase	1-phase -
Temperature (°C)	45	Type of Generator	Induction
Altitude (m)	1500	Over rating factor of MCCB	1.25
ELC correction factor	0.83	Over rating factor of cable	1.5
Frequency of the system (Hz)	50	No. of poles	2
Capacity of used generator (kW)	0	Rated rotor speed if induction generator N(rpm)	1450
Capacitor configuration	Delta	Efficiency of motor at full load	89%
OUTPUT			
Pe Electrical output (active power) (KW	20.00	Use of 3-phase generator is mandatory	
Generator			
Temp.factor	0.96	Altitude factor	0.96
Capacity (kW)	28.25	Actual available capacity (kW)	30.00
Synchronous rotational speed Ns (rpm)	1500	Rotational speed of the generator (rpm)	1550
IGC capacity (kW)	20.00	Calculated Ballast capacity 1.2*Pe (kW)	24.00
		Excitation Capacitance (micro F)	123.16
Rated Voltage (V)	220	I _{rated} for Cable & MCCB (A) at Generator side	170.45
Rating of MCCB (A)	113.64	Calculated size of MCCB (A)	142.04
Cable			
Rating (A)		Size of 2-core cupper armoured cables V 1-phase induction generator.	150

Figure 9.2: Electrical components of a 20kW 1-phase induction generator.

10 TRANSMISSION AND DISTRIBUTION

10.1 INTRODUCTION AND DEFINITIONS

Power generated at a powerhouse is evacuated to load centres with the help of transmission and distribution lines. According to the Nepal Standards, 400/230V is used for distribution system whereas 400/11000V is used for transmission system. Use of these standard voltages is recommended so that the power can be easily synchronised and evacuated to grid in future.

10.2 AEPC MGSP/ESAP GUIDELINES AND STANDARDS

AEPC MGSP/ESAP has formulated following guidelines regarding micro-hydropower transmission and distribution systems:

- 1 Cable configuration and poles: Buried or suspended on wooden or steel or concrete poles.
- 2 Permissible Voltage drop: 10% of nominal value.
- 3 Conductor: Aluminum conductor steel reinforced (ACSR) or Arial Bundled Cable (ABC)
- 4 The ASCR specifications are presented in Table 10.1.

ACSR Code number	Type of ACSR	Resistance Ohm/km	Current rating max Amps	Equivalent Copper area mm ²	Inductive Reactance Ohm/km	Sp. Weight (kg/km)	Sp. Cost (Rs/km)
1	Squirrel	1.374	76	13	0.355	80	13000
2	Gopher	1.098	85	16	0.349	106	14500
3	Weasel	0.9116	95	20	0.345	128	15500
4	Rabbit	0.5449	135	30	0.335	214	25750
5	Otter	0.3434	185	50	0.328		
6	Dog	0.2745	205	65	0.315	394	52000

Table 10.1: ASCR specifications

10.3 PROGRAM BRIEFING AND EXAMPLES

10.3.1 Program Briefing

- 1 The presented spreadsheet is designed to calculated transmission parameters for three phase 11kV and 400V and single phase 230V transmission and distribution lines.
- 2 Balanced load is considered, i.e., neutral conductor does not carry any current.
- 3 With a power factor of 0.8, the rated current and voltage drop are calculated as:

Table 10.2: Rated current and voltage drop calculation

Phase	Current (A)	Voltage drop (dV)
3-phase	Power*1000/(1.732*V* power factor)	1.732*IA*Z*Lkm
1-phase	Power*1000/(V*power factor)	2*IA*Z*Lkm

4 Impedance (Z) = $\sqrt{(\text{Resistance}^2 + \text{Reactance}^2)}$.

5 Voltage at node (Vi)

Phase	Voltage at node (Vi)
Single to single phase or 3 to 3 phase	Vprevious - dV
Three to single phase	Vprevious/1.732 - dV

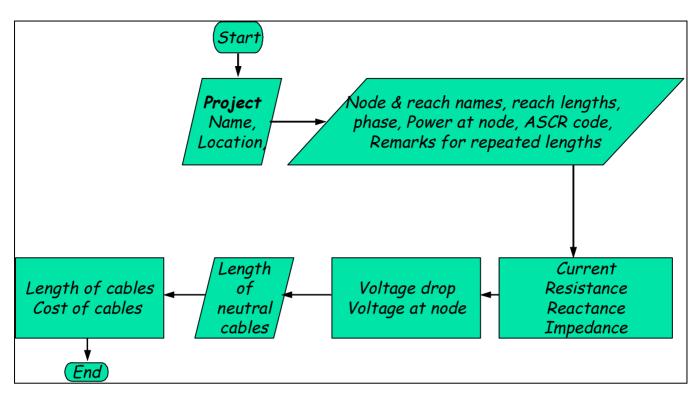


Figure 10.1: Flow chart of transmission and distribution line computation.

The grid and load presented in Figure 10.2 are used for the calculations presented in Figure 10.3.

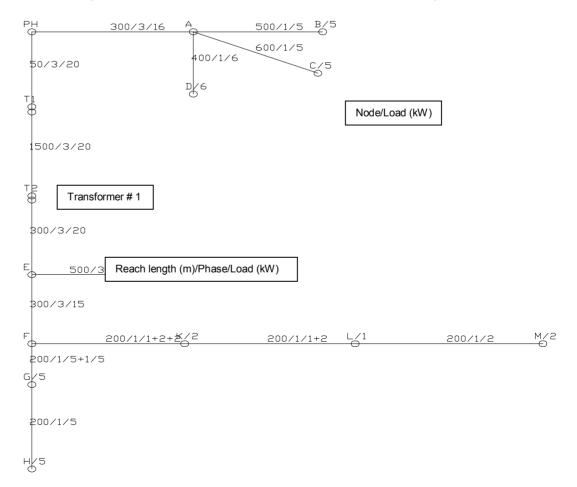


Figure 10.2: Transmission line and load used for the example.

Tra	nsmi	ssion an	d Distr	ibutio	on Sys	tem:			
Sprog	adabaat (developed by	Mr. Ducho	- Chitral	kor Engin	ooring Ac	Nicor SUDD		
•					kai, Eliyili	eening At	101501, 31166	Date	11-Nov-2005
		4, 6,12,13,15 ROPOWER P			ECTICTZ			Revision	2005.10
	oject:	-						REVISION	2005.10
	-		ogmai, lla nai Hydro		DIte				
	eloper sultant	EPC Co		power	PLIU				gu)
	igned		Chitrakar						SHPP
	cked		Chitrakar						
00									
						•			
Name	e of the	project:	Upper	logma	i, llam			Intormodia	te Calculation
			1		Deviewet		Vrated @	Interneula	
			Reach		Powerat next		node &		Rated Voltage
Ned		Reach	Length	Phase 1,3,11	node (kW)	ACSR	Current	V @ prev	d/s prev node
Noae	name	name	(km)	1,3,11	(KVV)	type	(A)	node (V)	(V)
PH-A	-B-C-D			3			400.00	400.00	400.00
PH	Α	PHA	0.450	3	16	Dog	28.87	390.60	400.00
A	В	AB	0.660	1	5	Rabbit	27.71	390.60	225.51
	С	AC	0.090	1	5	Rabbit	30.92	390.60	225.51
	D	AD	0.090	1	6	Rabbit	33.80	390.60	225.51
				1					-
PH-T	-			3			400.00	400.00	400.00
PH	T1	PHT1	0.050	3	20	Otter	36.08	400.00	400.00
			1				44000.00	44000.00	44000.00
<u>T1-T2</u> T1	2 T2	T1 T2	1.500	11 11	20	Squirrel	11000.00 1.31	11000.00 11000.00	11000.00 11000.00
	12	11.12	1.500	11	20	Squiller	1.31	11000.00	11000.00
Т2-Е			1	3			400.00	400.00	400.00
T2	Е	T2 E	0.300		20	Dog	36.08		
						Ŭ			
E-J (r)			1			226.44	226.44	226.44
T2	J	T2 J	0.300	1	20	Dog	110.41	226.44	226.44
			-	-	-				-
E-H ()				1			226.44	226.44	226.44
E	F	EF	0.300			Otter	33.12	217.04	226.44
F	Н	FH	0.400	1	5	Otter	28.80	217.04	217.04
E O //	b)						000.41	000.41	000.44
E-G (I	b) F	EF	0.300	1	7	Rabbit	226.44	226.44	226.44
E F	G	FG	0.300		5		38.64 29.53	211.64 211.64	226.44 211.64
•	0		0.200		5	ταυσιτ	29.00	211.04	211.04
E-M ((r)			1			226.44	226.44	226.44
E	F	EF	0.300		1	Squirrel	5.52	221.84	226.44
F	М	FM	0.600		1	Squirrel	5.63	221.84	221.84
F-K ()				1			217.04	217.04	217.04
F	K	FΚ	0.180	1	2	Squirrel	11.52	217.04	217.04
			1						
F-L(b		.		1			211.64	211.64	211.64
F	L	FL	0.180	1	1	Squirrel	5.91	211.64	211.64

Total lengt	th of cables (kn	n)	7.02	0.00	10.00	2.68	1.55	2.85
Length of neutral cables (km)					10			
Costofcat	oles(Rs.)	517720.00						
Reach Voltage drop (V)	Volt at node branch (V)	% voltag drop	Squirrel	Gopher	Weasel	Rabbiit	Otter	Dog
0.00	400.00		0.00	0.00	0.00	0.00	0.00	0.00
9.40	390.60	2.35	0.00	0.00	0.00	0.00	0.00	1.35
23.40	202.11	14.47	0.00	0.00	0.00	1.32	0.00	0.00
3.60	221.91	3.52	0.00	0.00	0.00	0.18	0.00	0.00
3.90	221.61	3.65	0.00	0.00	0.00	0.18	0.00	0.00
0.00	400.00		0.00	0.00	0.00	0.00	0.00	0.00
1.50	398.50	0.38	0.00	0.00	0.00	0.00	0.15	0.00
0.00	11000.00		0.00	0.00	0.00	0.00	0.00	0.00
4.70	10995.30	0.04	4.50	0.00	0.00	0.00	0.00	0.00
rr								
0.00	400.00		0.00	0.00	0.00	0.00	0.00	0.00
7.80	392.20	1.95	0.00	0.00	0.00	0.00	0.00	0.90
0.00	226.44		0.00	0.00	0.00	0.00	0.00	0.00
27.70	198.74	13.59	0.00	0.00	0.00	0.00	0.00	0.60
	000.44		0.00	0.00	0.00	0.00	0.00	0.00
0.00	226.44	5.04	0.00	0.00	0.00	0.00	0.00	0.00
9.40	217.04	5.64	0.00	0.00	0.00	0.00	0.60	0.00
10.90	206.14	16.01	0.00	0.00	0.00	0.00	0.80	0.00
0.00	226.44		0.00	0.00	0.00	0.00	0.00	0.00
14.80	220.44	7.98	0.00	0.00	0.00	0.60	0.00	0.00
7.60	204.04	19.27	0.00	0.00	0.00	0.40	0.00	0.00
0.00	226.44		0.00	0.00	0.00	0.00	0.00	0.00
4.60	221.84	3.55	0.60	0.00	0.00	0.00	0.00	0.00
9.40	212.44	11.19	1.20	0.00	0.00	0.00	0.00	0.00
μ	Į		Į	<u>I</u>	Į			
0.00	217.04		0.00	0.00	0.00	0.00	0.00	0.00
5.80	211.24	8.16	0.36	0.00	0.00	0.00	0.00	0.00
·	ł				!			
0.00	211.64		0.00	0.00	0.00	0.00	0.00	0.00
3.00	208.64	9.29	0.36	0.00	0.00	0.00	0.00	0.00

Figure 10.3: Typical example of a low voltage transmission line.

11 LOADS AND BENEFITS

11.1 GENERAL

BY optimising the use of available energy by allocating it in different time slots, benefit from a micro hydro scheme can be maximized. Based on the AEPC MGSP/ESAP guidelines, a spreadsheet on loads and benefits is presented for concerned stakeholders to arrive to the most optimum pre-construction decision.

11.2 AEPC MGSP/ESAP GUIDELINES AND STANDARDS

- 1. Average subscription wattage should not exceed 120W per household.
- 2. Minimum of 10% productive end use is mandatory.
- 3. Multipurpose scheme is preferable.

11.3 PROGRAM BRIEFING AND EXAMPLE

11.3.1 Program Briefing

A flow chart of loads and benefits analyses used in the spreadsheet is presented in Figure 11.1. Based on this flow chart, an example is presented in the in Figure 11.2. The main features and assumptions are:

- 1. For the first three years of operation, one set of domestic and five different end uses can be defined in five different time slots in the 24-hour load duration curve.
- 2. Probable business load after three years of operation can defined based on the AEPC requirements.
- 3. Annual available energy, annual load, productive end use load factor and annual total income are calculated and subsequently used in the financial analyses.
- 4. A load duration chart for the first three years of operation is presented at the end of the spreadsheet. This chart is very helpful in planning and allocating different loads so that the benefits are maximized.

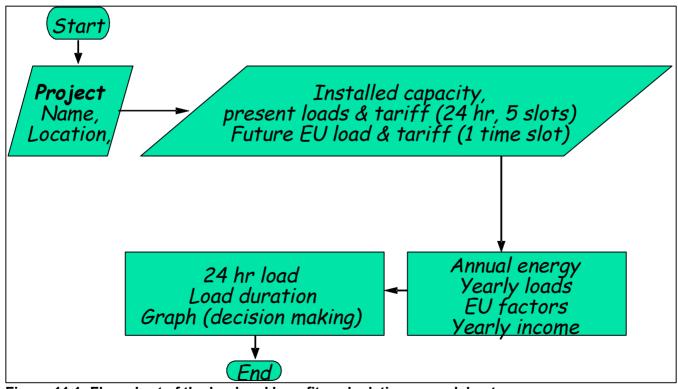


Figure 11.1: Flow chart of the load and benefits calculation spreadsheet.

LOADS AND BE	NEFITS	;							
Spreadsheet developed t	-		Engineerina Ad	lvisor, SHPP/GTZ					
Referances: 1,2,3,4, 6,12		, ,			Date	11-Nov-2005			
						2005.10			
SMALL HYDROPOWER			IIGIZ	1 1	Revision				
Project:		ad Khola		Location:	Ladagada	VDC, Doti		-	~
Developer	Gaddi Ga	ad Khola M	HP					GIU	7)
Consultant	Perinial							2	
Designed	Pushpa C	Chitrakar						SHP	P
Checked	Pushpa C								
Checkeu	r ustipa c	Jiiuakai							
INPUT									
General									
Power Output (kW)	96.1			Domestic lightin					
Name of the Source	Gaddi Gad	Khola		Average subscrip		(W/HH)	85		
Depeticion (UU (nee)	474			System loss	10%	F	0	10	
Beneficiary HH (nos.)	471			time	01.08	5		18 91.1	2
Plant's operating days	330		l	load	91.08	U	U	91.1	
	Oneretin	Toriff (D-)	1	Brobable Busin		atad after 2	0.070		
Loads (kWh or W/m) Domestic	Operating			Probable Busine				From /br	To //-
Agro-processing	330 330	1.00 6.00		Metal Workshop	Operating d/y 330			From (hr) 12	1
Bakery	320	6.00		Photo Studio	320	6.00		8	1
Saw Mill	320	5.00		Dairy Processing	320	6.00		ہ 8	
Herbs Processing	180	5.00		Cold Store	320	6.00		ہ 8	
Load 5	330	0.00		Load 5	510	0.00	0	0	
Load 6	330			Load 6					
	000		J		1	1	1		I
Proposed end uses and	d opertina	hours							
time (hr)		4	12	16	22	Daily I	Energy Demand (Dd) kWh	1053	
Agro-processing	0	0		0	0	· · · ·	Energy Demand (Dd) kWh	384199	
time (hr)	0	8		18	22		Average Load Factor	50.71%	
Bakery	0	9	0	0	0	1			
time (hr)	0	3	-	18	22	1			
Saw Mill	0	0		0		1			
time (hr)	0	3	12	17	22	1			
Herbs Processing	0	0		0		1			
time (hr)	0	6		15	22				
Load 5	15	0		0	0				
time (hr)	0	3		10	22				
Load 6	12	0	0	0	0				
OUTPUT Summary					1				
Annual Available kWh	761112								
Maashala 140425				After 3 years					
Yearly load (kWh)	faate= (0/)		117060	147680					
Productive end use load		noome (De)	15.38	19.40					
Annual total (domestic +	enu uses) l	ncome (KS)	916,050	1,099,770	I				
End Lloo		0	ion Doriod	Voorly Lood		Appus	1		
End Use	Load		ion Period	Yearly Load		Annual			
Domestic Lighting	(kW) 44.0385	Hours/day 14.4782406	Days/year 330	kWh 210408	LF (%) 27.64	Income (Rs) 480,420	1		
Existing/Committed Bu				210408	27.04	400,420	1		
Agro-processing	22.5	ч л	330	29700	3.90	178200	-		
Bakery	22.5	6		17280					
Saw Mill	9 10	2		6000					
	25	5		22500					
Herbs Processing	15	6		22300		120700			
Herbs Processing		3		11880					
Load 5	13		000	117060		435,630			
						916,050	4		
Load 5 Load 6	12					010,000			
Load 5 Load 6 Total	12					510,000			
Load 5 Load 6 Total	12 rom sales c	of electricity				510,000			
Load 5 Load 6 Total Total Annual Income fr	12 rom sales c	of electricity	330	13200	1.73				
Load 5 Load 6 Total Total Annual Income fi Probable Business Loa	12 rom sales c ad after 3 ye	of electricity ears		13200 3840	1.73 0.50	79200			
Load 5 Load 6 Total Total Annual Income fr Probable Business Loa Metal Workshop	12 rom sales c ad after 3 ye	of electricity ears 4	320			79200 23040			
Load 5 Load 6 Total Total Annual Income fr Probable Business Loa Metal Workshop Photo Studio	12 rom sales c ad after 3 yo 10 1	of electricity ears 4 12	320 320	3840	0.50 3.36	79200 23040			
Load 5 Load 6 Total Total Annual Income fr Probable Business Loa Metal Workshop Photo Studio Dairy Processing	12 rom sales c ad after 3 yo 10 1 8	of electricity ears 4 12 10	320 320 310	3840 25600 18600	0.50 3.36 2.44	79200 23040 153600 111600			
Load 5 Load 6 Total Total Annual Income fr Probable Business Loa Metal Workshop Photo Studio Dairy Processing Cold Store Load 5 Load 6	12 rom sales c ad after 3 ye 10 1 8 6 6 0 0	of electricity ears 4 12 10 10 0 0 0	320 320 310 0	3840 25600 18600 0 0	0.50 3.36 2.44	79200 23040 153600 111600 0			
Load 5 Load 6 Total Total Annual Income fr Probable Business Loa Metal Workshop Photo Studio Dairy Processing Cold Store Load 5 Load 6 Total additional annual in	12 rom sales c ad after 3 ye 10 1 8 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	of electricity ears 4 12 10 10 0 0 0	320 320 310 0	3840 25600 18600 0	0.50 3.36 2.44 0.00	79200 23040 153600 111600 0 0			
Load 5 Load 6 Total Total Annual Income fr Probable Business Loa Metal Workshop Photo Studio Dairy Processing Cold Store Load 5 Load 6	12 rom sales c ad after 3 ye 10 1 8 6 6 0 0	of electricity ears 4 12 10 10 0 0 0	320 320 310 0	3840 25600 18600 0 0	0.50 3.36 2.44 0.00 0.00	79200 23040 153600 111600 0 0			

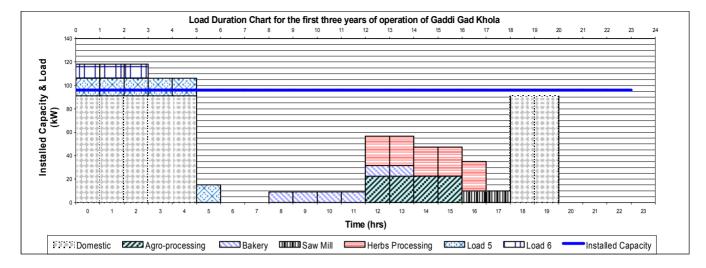


Figure 11.3: Load duration curve

It can be seen from the load duration curve presented in Figure 11.3 that the scheme is mainly dominated by domestic load. Other end uses can be incorporated within 05 to 16 hours. In case the scheme has to share water with other existing water utilities such as irrigation system, this can be arranged during the non-operating hours or during partial load period. This load duration curve can also be used to maximize benefits even at lower tariff during such hours.

12 COSTING AND FINANCIAL ANALYSES

12.1 INTRODUCTION AND DEFINITIONS

As per the guidelines and standards set aside by AEPC, this spreadsheet tests financial viability of a micro-hydro scheme.

12.2 AEPC MGSP/ESAP GUIDELINES AND STANDARDS

- 1. 15 years as the economic life span of the project for calculating financial parameters.
- 2. Total cost of the project including subsidy should be limited to

Table 12.1: Per kilowatt subsidy and cost ceiling as per AEPC

Walking distance	Subsidy	Ceiling
less than 2 days walking distance	70000	150000
2-5 days walking distance	78750	158750
more than 5 days walking distance	91500	171500

3. Net present value of equity investment at a discount rate of 4% should be positive.

12.3 PROGRAM BRIEFING AND EXAMPLE

12.3.1 Program Briefing

The spreadsheet presented takes the total costs, financing of the project and annual cost as inputs to calculate the financial parameters such as the net present value, cost per kilowatt, etc. The flow chart on which the spreadsheet is based is presented in Figure 12.1. Annual cash flows for the stated planning horizon is presented and used to calculate different financial parameters.

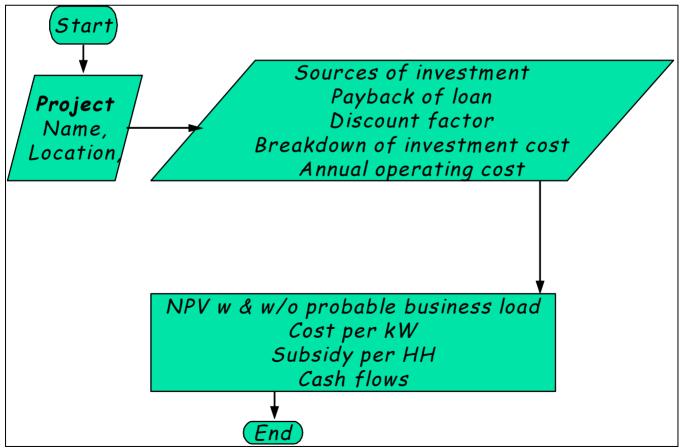


Figure 12.1: Flow chart for Project costing and financial analyses.

12.3.2 Typical example of costing and financial analyses

A typical example of costing and financial analyses of a micro-hydro scheme based on projected cash flow is presented in Figure 12.2.

is presented in	Figure 12.2						
Project Cos	sting and I	Financial A	Analyses				
Spreadsheet deve	eloped by Mr. F	Pushpa Chitraka	ar, Engineering A	Advisor, SHPP/	GIZ)
Referances: 1,2,3		•	, , , ,	, -	Date	12-Nov-2005	GUZ)
SMALL HYDROP					Revision	2005.10	SHPP
		Mai Khola	51/612			2000.10	MCN:
Project		_					
Developer			lydropower P	Ltd			
Consultant		EPC Consul	t				
Designed		Pushpa Chit	rakar				
Checked		Pushpa Chit	rakar				
INPUT							
Project size (kW)):	96.10					
Total Project Co	ost (Rs.)	12,734,865					
more than 5 days w	alking distance	al subsidy	Bank loan	Other loan	Cash equity	Kind equity	Others
91500	Rs/kW x 96.1	8793150	1,890,044		1,200,000	851,671	C
Interest rate (%)			3%				
Payback period	(yr)		7				
Plant life (yr)		15					
Discount Rate (%	<u> </u>	4%	l				
						0&M(Rs)	305,004
Investment Cost		8,516,715		1	1	Salary	114000
Mechanical comp			Installation	232,500		Spares	0
Electrical compor	nent		Commissioning	0		Maintenance	171,000
Civil component		1,363,497		623,611		Office expens	
Spare parts & too	ds		Contingencies	0		Miscellaneous	20,004
Transport.		3,178,800	Others			Others	
Cost Summar	у У				NPV Based on	Different Proj	ect Costs
Project cost (Rs)			12,734,865		NPV	Probable Busi	ness Load
Annual Operation						Without	With
Annual Income w	ithout probable	business loads	916050		Total cost	-3,407,381	-1,933,506
Annual Income w	ith probable bu	siness loads (F	1099770		Subsidy	5,047,571	6,521,446
Annual installmen	nt for Bank loan		303364		Equity	3,627,922	5,101,797
Annual installmen			NA				
NPV on equity wi			3,627,922				
NPV equity with p	probable busine	ess load (Rs)+v					
Cost/Kw=>>Ok			132,517				
Subsidy/HH			18,669	1			
Annual Cash	Flows	1	1	1		1	
					le Business Loads	With Probable E	
Year	Equity	O & M costs	Loan repayment	Income	Cash flow	Income	Cash flow
0	1,200,000				-1,200,000		-1,200,000
1		305,004	303,364	916,050	307,682	916,050	307,682
2		305,004	303,364	916,050	307,682	916,050	307,682
3		305,004	303,364	916,050	307,682	916,050	307,682
4		305,004	303,364	916,050	307,682	1,099,770	491,402
5		305,004	303,364	916,050	307,682	1,099,770	491,402
6		305,004	303,364	916,050	307,682	1,099,770	491,402
7		305,004	303,364	916,050	307,682	1,099,770	491,402
8		305,004	0	916,050	611,046	1,099,770	794,766
9		305,004	0	916,050	611,046	1,099,770	794,766
10		305,004	0	916,050	611,046	1,099,770	794,766
11		305,004	0	916,050	611,046	1,099,770	794,766
12		305,004	0	916,050	611,046	1,099,770	794,766
13		305,004	0	916,050	611,046	1,099,770	794,766
14		305,004	0	916,050	611,046	1,099,770	794,766
15 305,004			0	916,050	611,046	1,099,770	794,766

Figure 12.2: A typical example of project costing and financial analyses.

13 UTILITIES

13.1 INTRODUCTION

In this spreadsheet minor tools for independent minor calculations are presented. These tools are specially helpful in case minor quick and handy independent computations are required. Some of the presented tools are:

13.1.1 Uniform depth of a rectangular or trapezoidal canal

Calculation of uniform depths of rectangular and trapezoidal sections is an iterative process. Manning's equation is used for calculating uniform depth. VBA for Excel is used for this iterative process. A typical calculation is presented in Figure 13.1.

Uniform Depth of a Trapezoidal Canal (Y-m)

Design Discharge (l/s):	4 1	200.000	k 7 J
1/Mannings Coeff (M):		65.0000	
1/Canal Slope (S):	4 1	50	
Width of Canal (b-m):		0.500	
Unlined firm/gravelyl/clay/side hill c/s in average loam c	ut (z m)	- 1	P K− B −1]
Uniform Depth (Y-m)		0.150	0

Figure 13.1: A typical example of uniform depth calculation of a trapezoidal section

13.1.2 Payment of loan for different periods such as monthly, quarterly and yearly.

The tool presented in Figure 13.2 is useful for calculating equal instalment payback for a given loan at a specific interest rate and terms. Three modes namely monthly, quarterly and yearly payments are available in this tool.

Payment of a loan

Figure 12.2: A typical example EMI calculation		
Monthly Payment		154,919.57
Monthly payments and No	4 1	12
Interest rate (APR):	4 1	6.00%
Loan amount:		1,800,000

Figure 13.2: A typical example EMI calculation

13.1.3 Power calculations

This tool is useful for calculating power based on AEPC guidelines for subsidy criteria and actual power based on known cumulative efficiency. A typical example is presented in Figure 13.3 below:

Power MGSP-ESAP (Pe-kW)

Discharge (I/s):		160
Cumulative efficiency(n%)	4 1	65.00%
Head (H-m)		27.50
Actual Power (Pact-kW)		28.06
Power MGSP-ESAP (Pe-kW)		21.58

Figure 13.3: A typical example of power calculation

13.1.4 Spillway sizing.

The spillway sizing tool is useful for calculating spillway lengths for different spillway shapes with different downstream conditions (downstream obstructed or free). As presented in Figure 13.4, this tool calculates actual spillway length required for critical conditions of load rejection and off-take flood.

Spillway Lengths (m)

Flood discharge (I/s):		540
Design discharge (I/s):		126
Overtopping height (ho) mm:	4	150
Spillway discharge coeff	2.1	•
L spillway min for Qf m & full height		4.43
Length of spillway Ls1 for Qf m & half height		9.60
Figure 42.4. A typical evenue of anilly avaining	a	

Figure 13.4: A typical example of spillway sizing

13.1.5 Voltage drops of transmission line.

This tool calculates voltage drop, percentage voltage drop and voltage at a lower end of a transmission line segment for a given power. A typical example is presented in Figure 13.5.

Voltage Drop	
Reach length (km)	7.000
Voltage at 1st node (V)	11,000
Power (kW)	190
ASCR type	Squirrel
Phase at 1st node (1/2/11(for 11kV or above)	11
Phase at 2nd node (1/2/11(for 11kV or above)	11
Current (A)	12.47
Impedence Ohm/km	1.3803
Voltage at 2nd node (kV) 208.6V ,1.9%	10,791.40

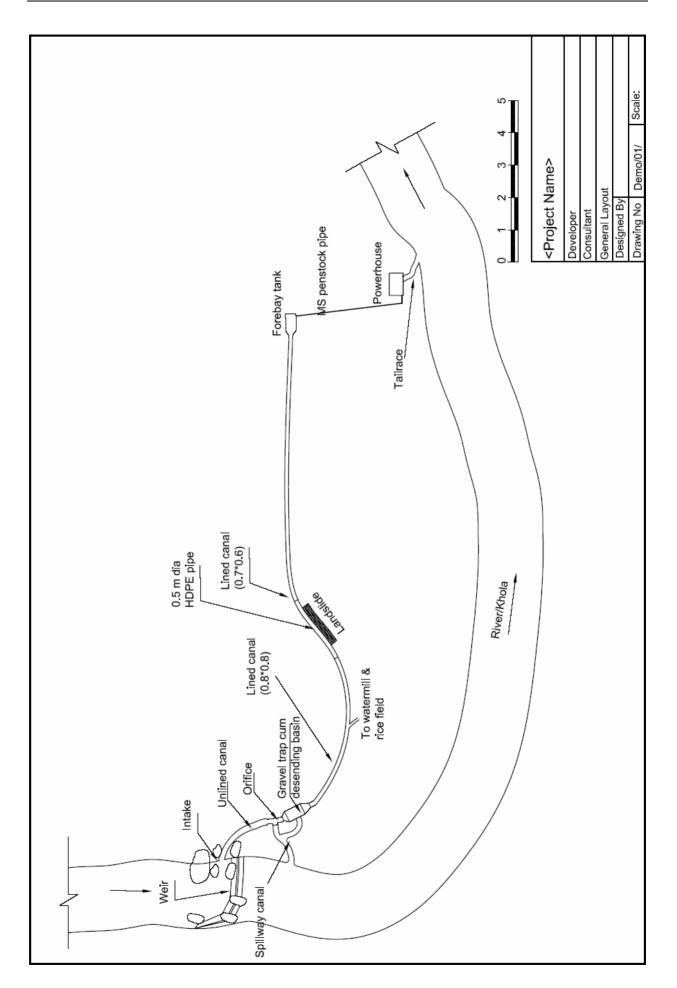
Figure 13.5: A typical example of transmission line calculation

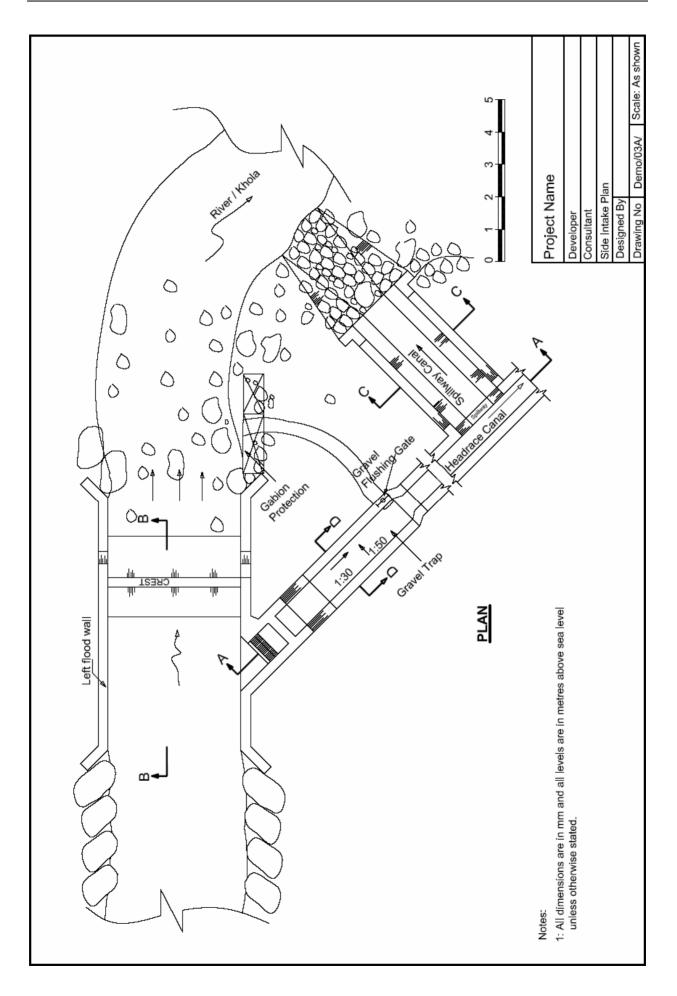
13.1.6 Pipe friction factor.

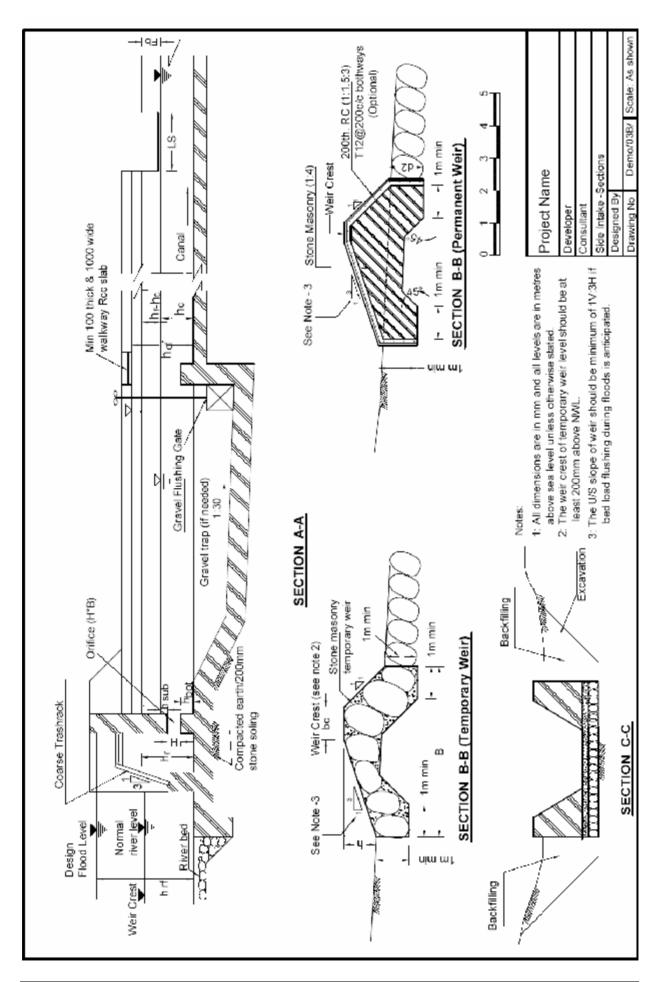
This tool is quite useful for calculating friction factor. Manual friction factor calculation involves a long and tedious process and can be erroneous. The tool presented in Figure 13.6 also calculates head losses in metres and percentage and net head for given inputs.

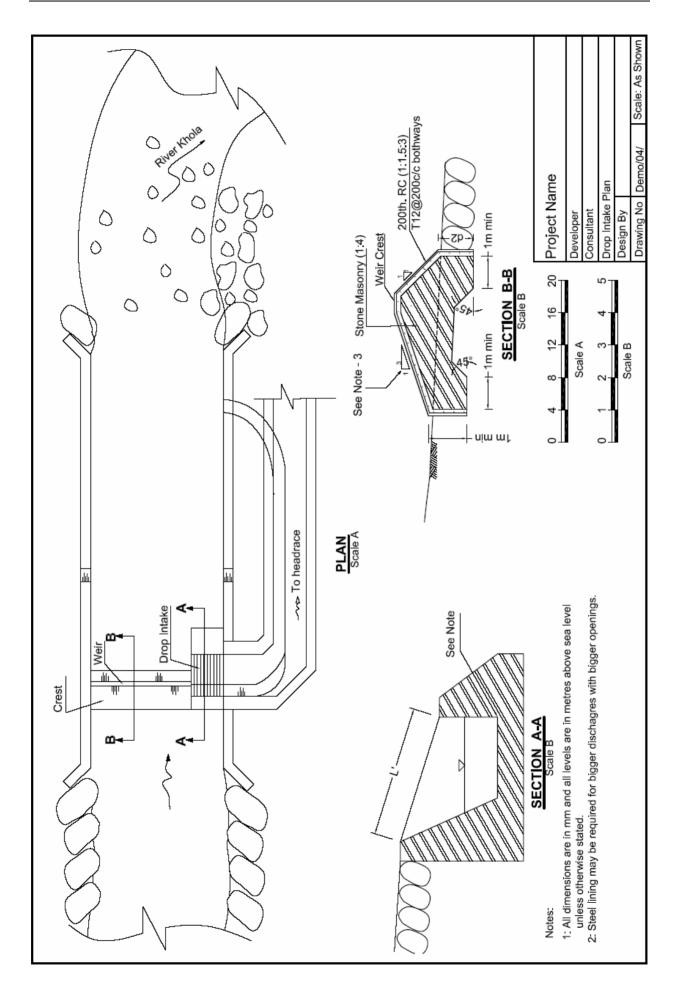
Friction Factor (f) & Net head

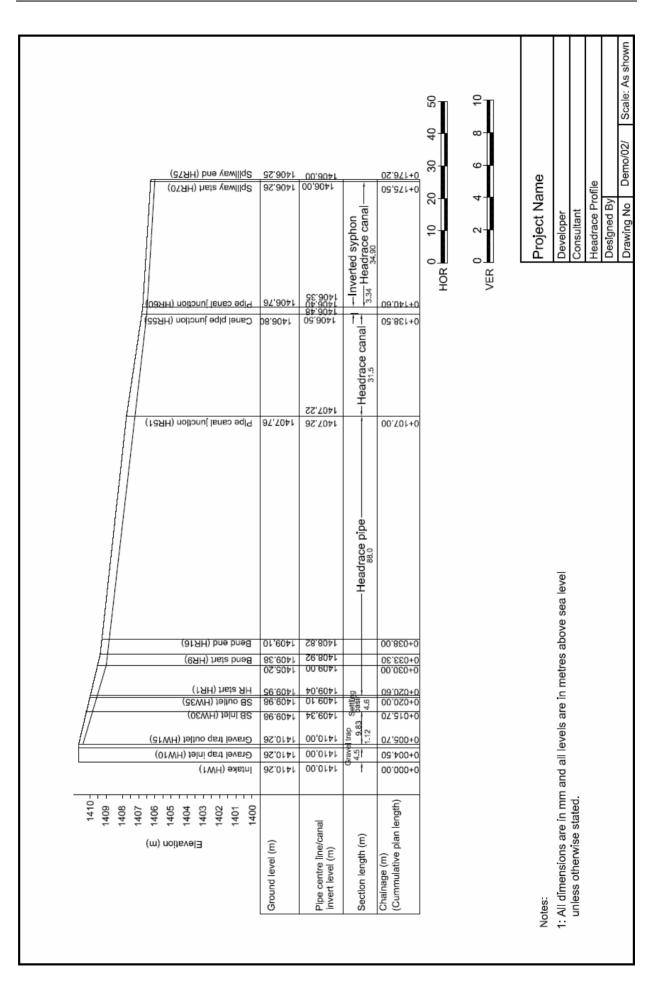
	0.400
Discharge (m3/s)	0.160
Gross head (m)	20
Pipe roughness ks (mm)	0.060
Pipe diameter (m)	260.00
Pipe Length (m)	140
Turbulent headloss factor (K)	1.50
Friction factor f	0.0153
Net Head (m), hI=4.52m 22.59%	15.48

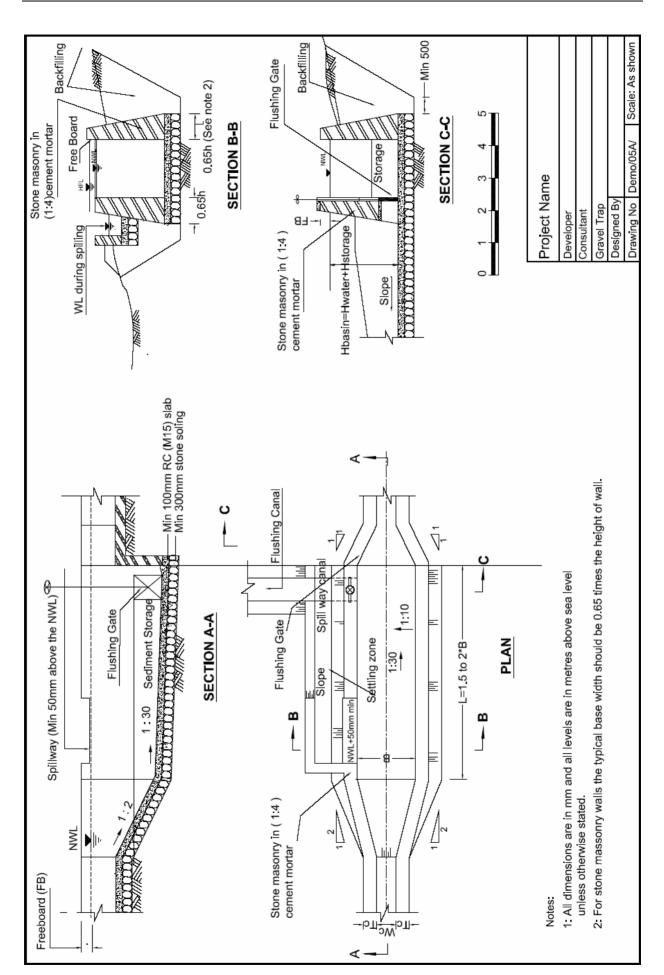

Figure 13.6: A typical example of pipe friction calculation

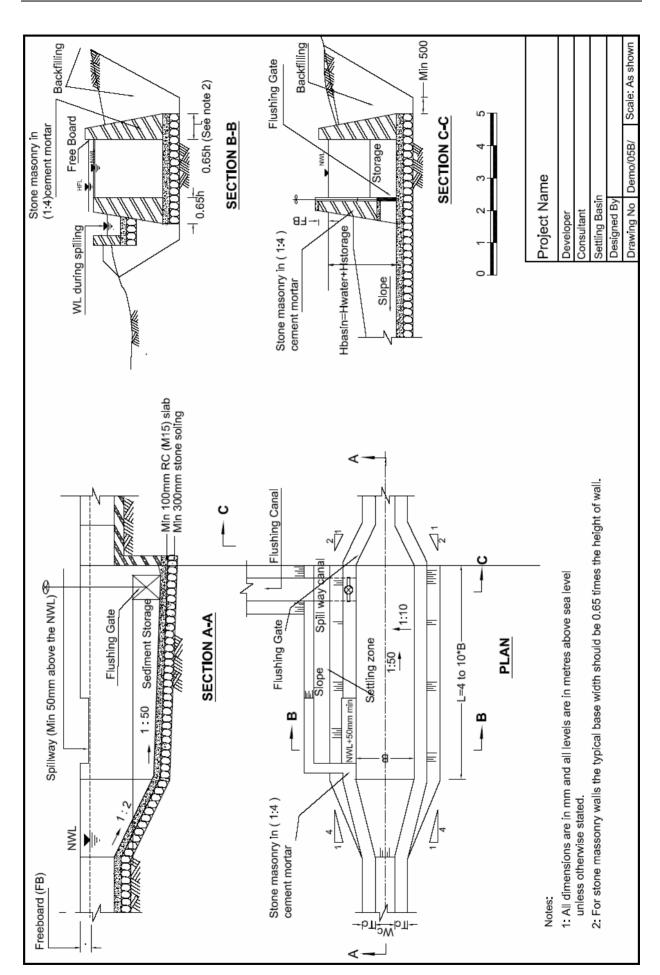

14 REFERENCES

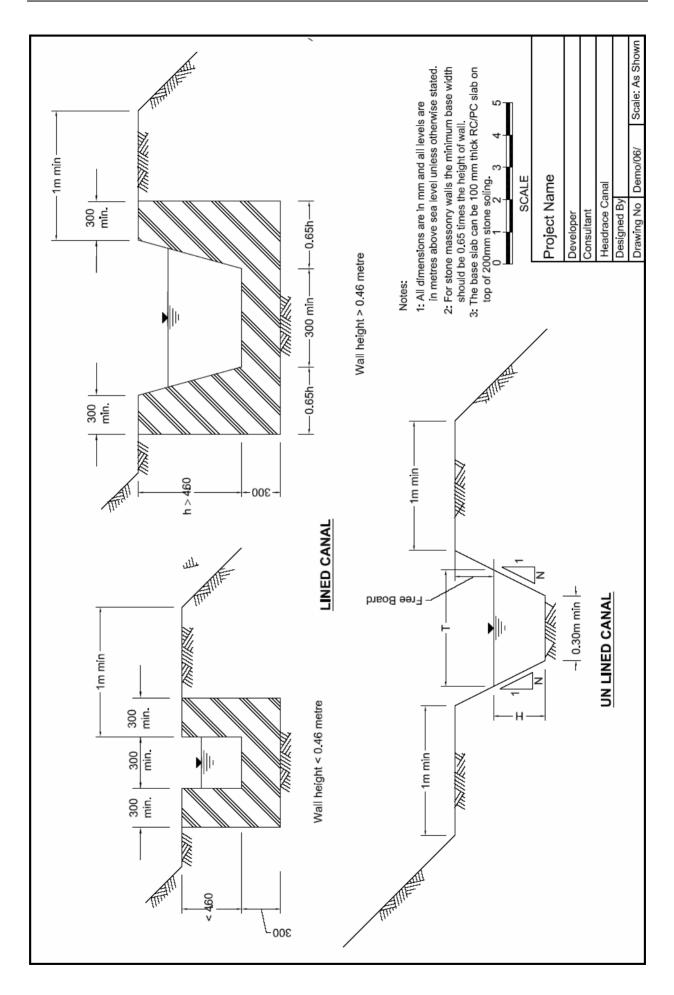

- 1. Mini-Grid Support Programme, Alternative Energy Promotion Centre, Kathmandu, Nepal (2002), Peltric Standards
- 2. Mini-Grid Support Programme, Alternative Energy Promotion Centre, Kathmandu, Nepal (2003), Preliminary Feasibility Studies of Prospective Micro-hydro Projects
- 3. Mini-Grid Support Programme, Alternative Energy Promotion Centre , Kathmandu, Nepal(2001), Technical Details and Cost Estimate
- 4. Mini-Grid Support Programme, Alternative Energy Promotion Centre, Kathmandu, Nepal(2003), Guidelines for Detailed Feasibility Study of Micro-Hydro Projects
- 5. European Small Hydropower Association (1998), Layman's Guidebook on How to Develop a Small Hydro Site
- 6. BPC Hydroconsult, Intermediate Technology Development Group (ITDG), Kathmandu, Nepal (2002), Civil Works Guidelines for Micro-Hydropower in Nepal.
- 7. United Nations Industrial Development Organization (UNIDO), Report on Standardiztion of Civil Works for Small Hydropower Plants
- 8. GTZ/Department of Energy Development, Energy Division, Papua New Guinea, Micro Hydropower Training Modules (1994), Modules 1-7, 10, 13, 14 & 18B.
- 9. American Society of Civil Engineer (ASCE), Sediment Transportation.
- 10. KB Raina & SK Bhattacharya, New Age International (P) Ltd (1999), Electrical Design Estimating and Costing.
- 11. Badri Ram & DN Vishwakarma, Tata McGraw-Hill Publishing Company Limited, New Delhi 1995, Power System Protection and Switchgear, 1995.
- 12. Adam Harvey et.al. (1993), Micro-Hydro Design Manual, A guide to small-scale water power schemes, Intermediate Technology Publications, ISBN 1 85339 103 4.
- Allen R. Inversin (1986), Micro-Hydropower Sourcebook, A Practical Guide to Design and Implementation in Developing Countries, NRECA International Foundation, 1800 Massachusetts Avenue N. W., Washington, DC 20036.
- 14. Helmut Lauterjung/Gangolf Schmidt (1989), Planning of Intake Structures, GATE/GTZ, Vieweg.
- HMG of Nepal, Ministry of Water Resources, Water and Energy Commission Secretariat, Department of Hydrology and Meteorology, Methodologies for estimating hydrologic characteristics of un-gauged locations in Nepal (1990).
- 16. HMG/N, Medium Irrigation Project, Design Manuals, 1982
- 17. His Majesty's Government of Nepal, Ministry of Water Resources, Department of Irrigation, Planning and Design Strengthening Project (PDSP), United Nations Development Programme (NEP/85/013) / World Bank, Design Manuals for Irrigation Projects in Nepal, 1990.
- 18. ITECO, DEH/SATA Salleri Chialsa Small Hydel Project (1983), Technical Report.

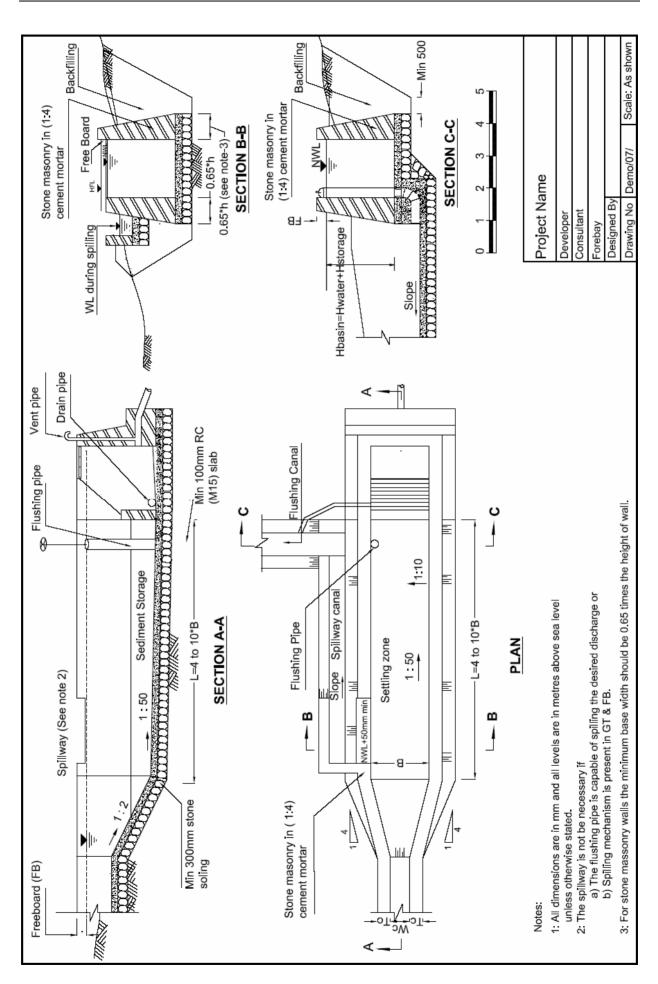

- 19. P.N. Khanna (1996), Indian Practical Civil Engineer's Handbook, 15th Edition, Engineer's Publishers, Post Box 725, New Delhi 110001.
- 20. ITDG, Electrical Guideline For Micro-Hydro Electric Installation.
- 21. REDP, REDP Publications, Environment Management Guidelines, 1997
- 22. ITDG, IT Nepal Publications, Financial Guidelines for Micro-hydro Projects, 1997
- 23. IT Nepal Publications, Management Guidelines For Isolated MH Plant In Nepal, 1999.
- 24. ITDG, prepared for ESAP, Guidelines relating to quality improvement of MH plants, 1999
- 25. ICIMOD, Manual for Survey and Layout Design of Private Micro Hydropower Plants.
- 26. Norwegian Water Resources and Energy Administration, The Norwegian Regulations for Planning, Construction and Operation of Dams, Norwegian University Press, Oslo, Norway, 1994.

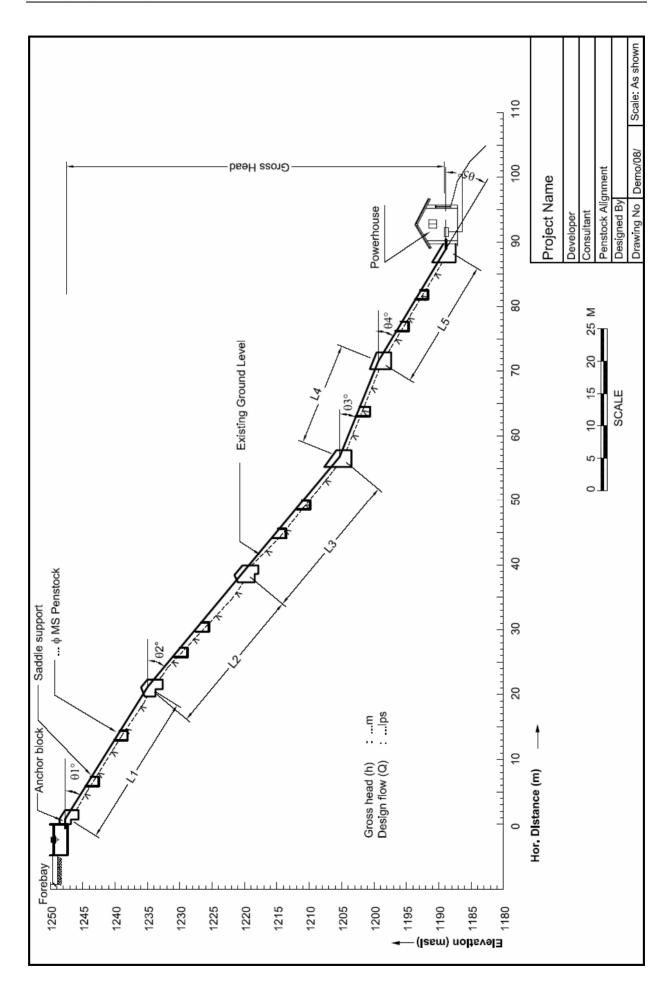

APPENDICES

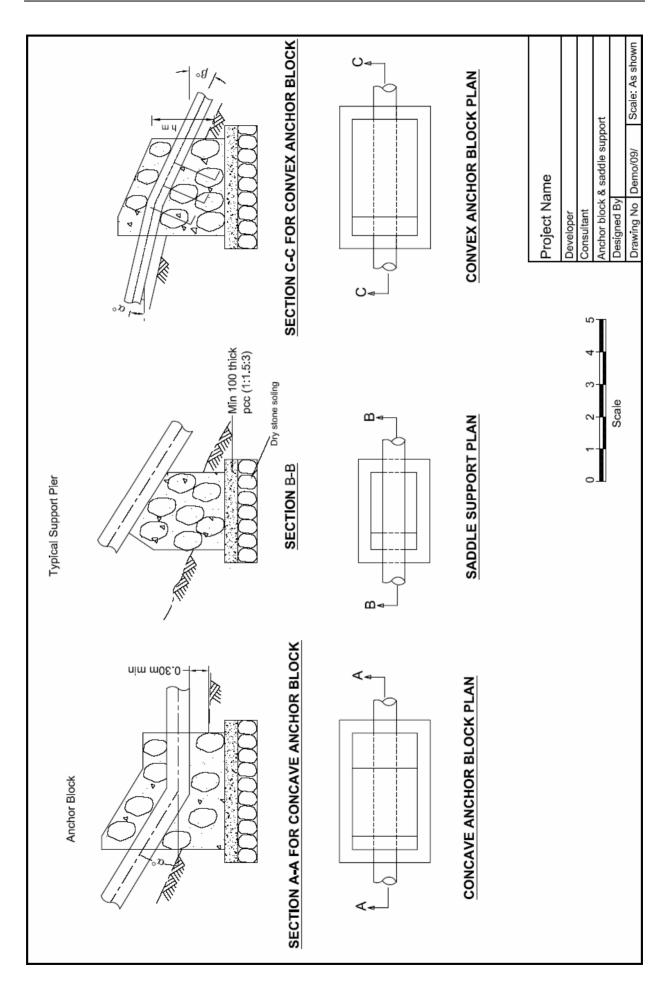


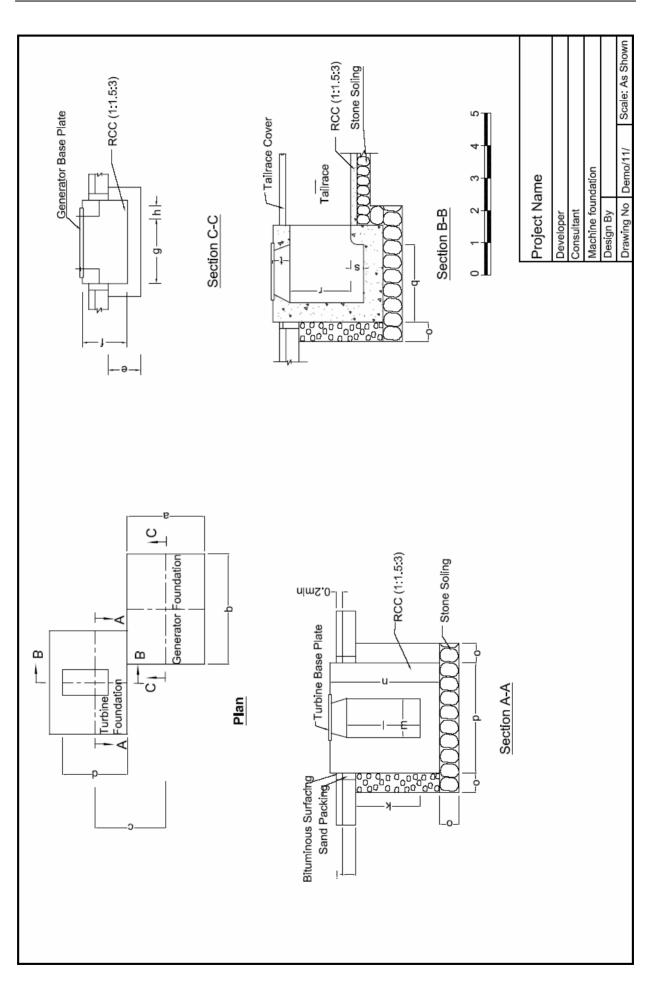


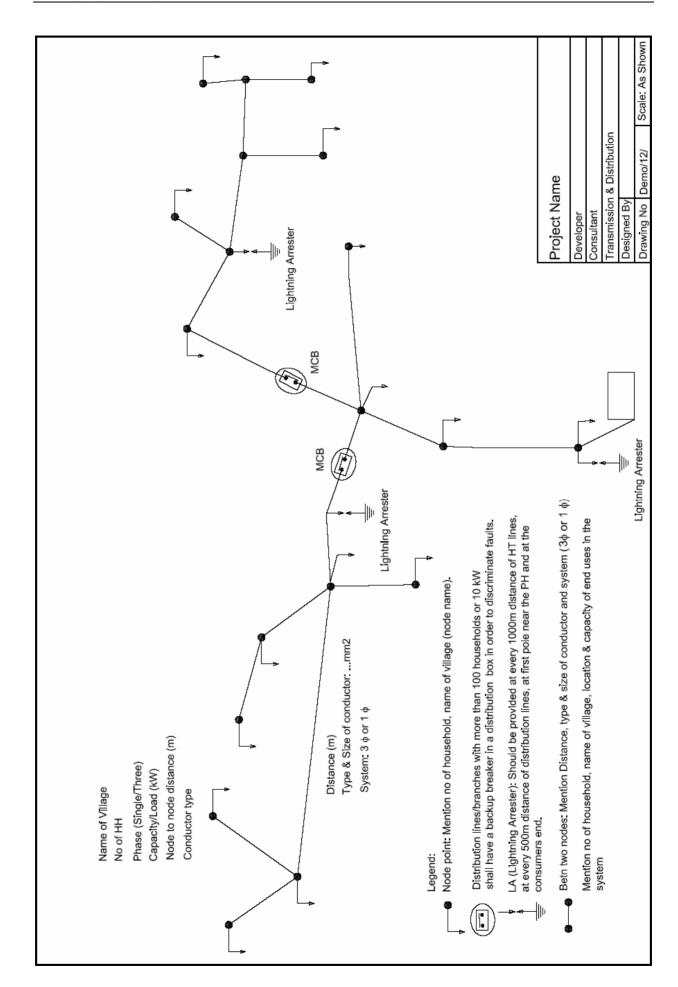


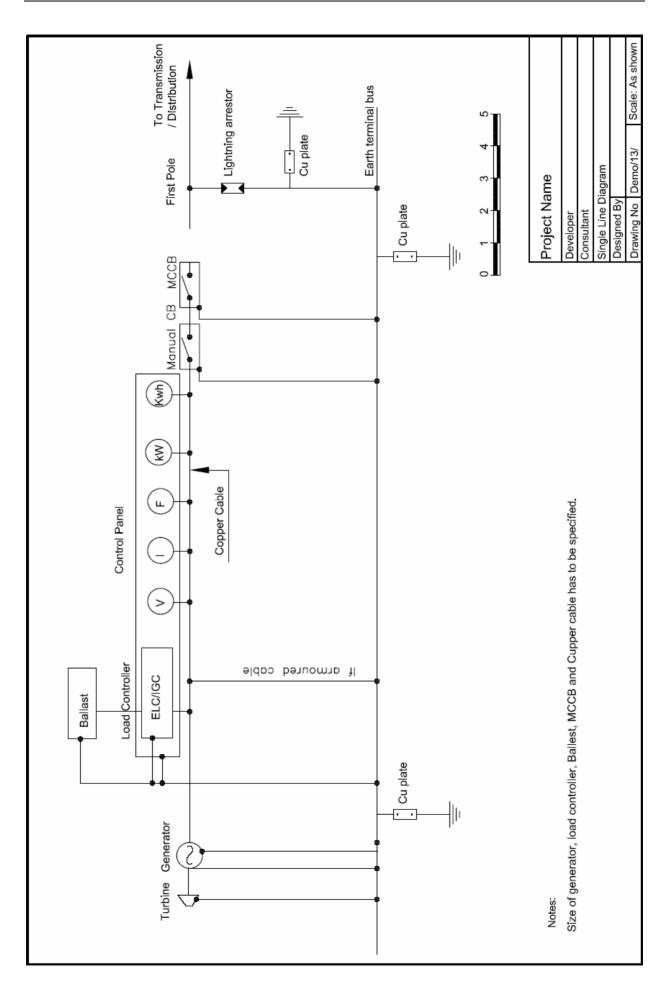


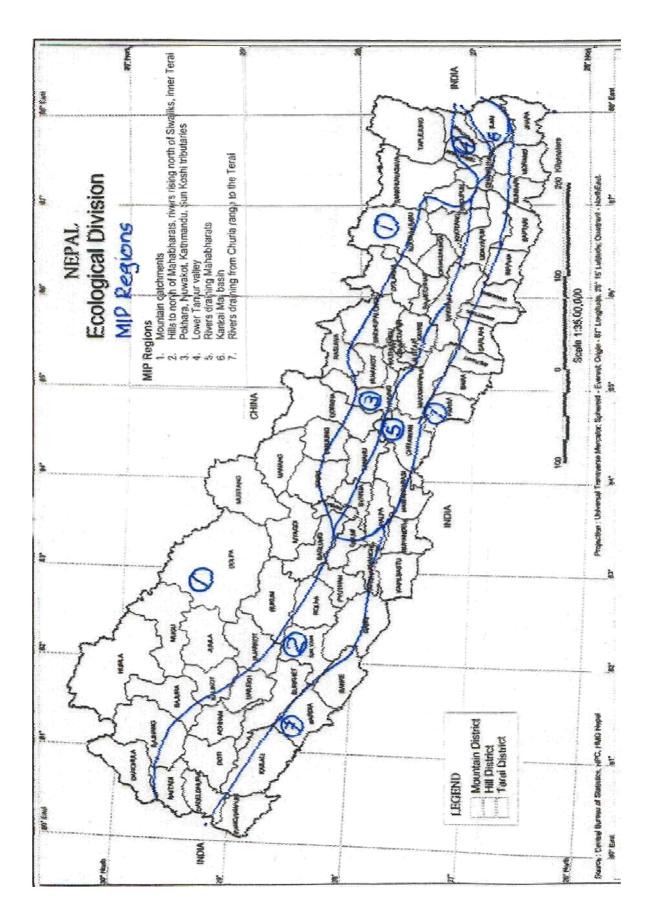


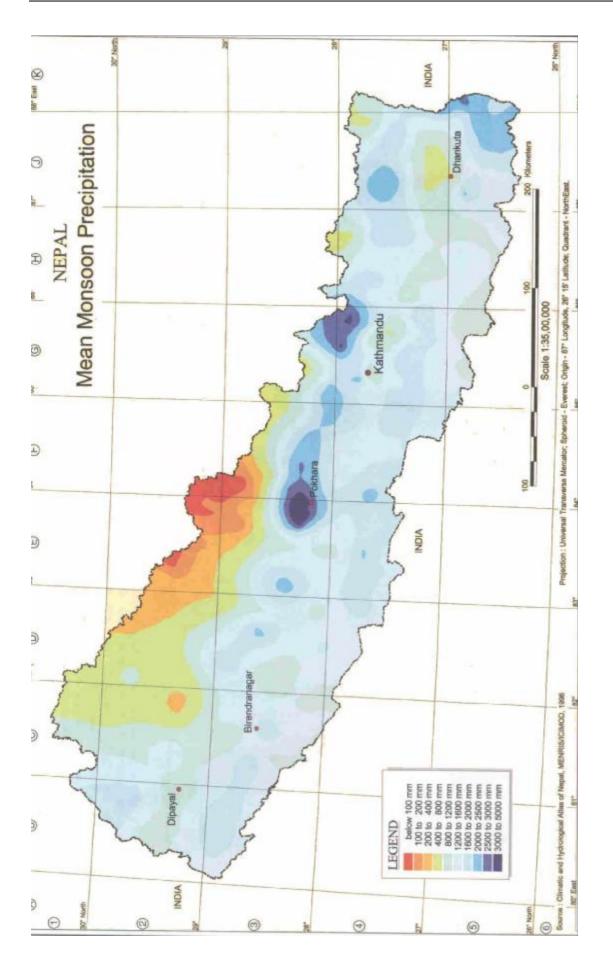


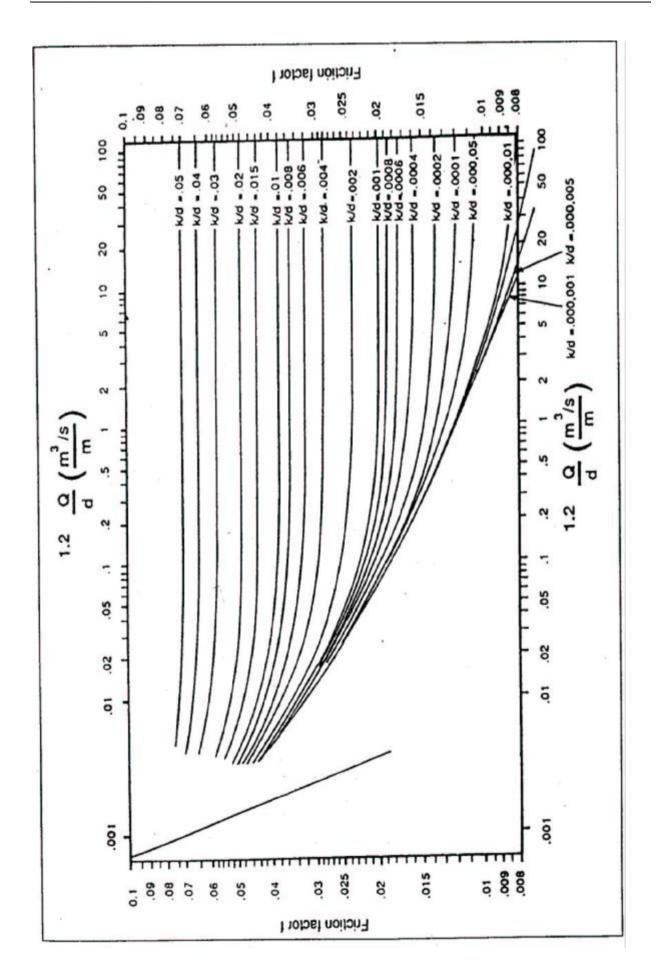






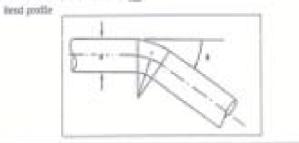






Month	Regions							
	1	2	3	4	5	6	7	
January	2.40	2.24	2.71	2.59	2.42	2.03	3.30	
February	1.80	1.70	1.88	1.88	1.82	1.62	2.20	
March	1.30	1.33	1.38	1.38	1.36	1.27	1.40	
April	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Мау	2.60	1.21	1.88	2.19	0.91	2.57	3.50	
June	6.00	7.27	3.13	3.75	2.73	6.08	6.00	
July	14.50	18.18	13.54	6.89	11.21	24.32	14.00	
August	25.00	27.27	25.00	27.27	13.94	33.78	35.00	
September	16.50	20.91	20.83	20.91	10.00	27.03	24.00	
October	8.00	9.09	10.42	6.89	6.52	6.08	12.00	
November	4.10	3.94	5.00	5.00	4.55	3.38	7.50	
December	3.10	3.03	3.75	3.44	3.33	2.57	5.00	

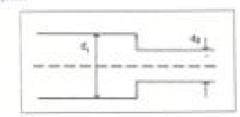
Roughness values, k mm


Use 'normal condition' for design purposes

Material		Age/condition		1
		Good (< 5 years)	Normal (5-15 years)	Poor (>15 years)
Smooth p PVC,	hipes HDPE, MDPE,			
Glass	fibre	0.003	0.01	0.05
Concrete		0.06	0.15	· 1.5
Mild stee	I - Uncoated	0.01	0.1	0.5
	- Galvanized	0.06	0.15	0.3
Cast iron				
New		0.15	0.3	0.6
Old	- Slight corrosion	0.6	1.5	3.0
	- Moderate corrosion	1.5	3.0	6.0
	- Severe corrosion	6.0	10.0	20.0
	1			0

Interaction for invalues H______ Interact profile Interact profile Herein 14 0.8 0.5 0.7

iterad issue coefficients for bench (K_)


10	1	. 2	1	1	MITER?"
a	0.20	0.15	0.12	8.18	0,10
1. 85 m 45")	D.40	0.30	0.25	8,28	0.22
1. (0 = 10 ²)	0.25	0.30	0.40	8.38	0.45

....

"Mitteed bench with cid == 1.2, communant 30° per cut/wit joint.

tiend ions coefficients for sudden contractions (R_____)

Contraction profile

4,44,	1.0	15	2.8	-15	1.0	
H	2	0.25	6.25	6,481	5.50	

SPRENCAL.	GATE	BUTTERFLY	
	0.1	43	
	SPRENCAL	SPREADCAL GATS	SPREMICAL GATE BRITHEREY