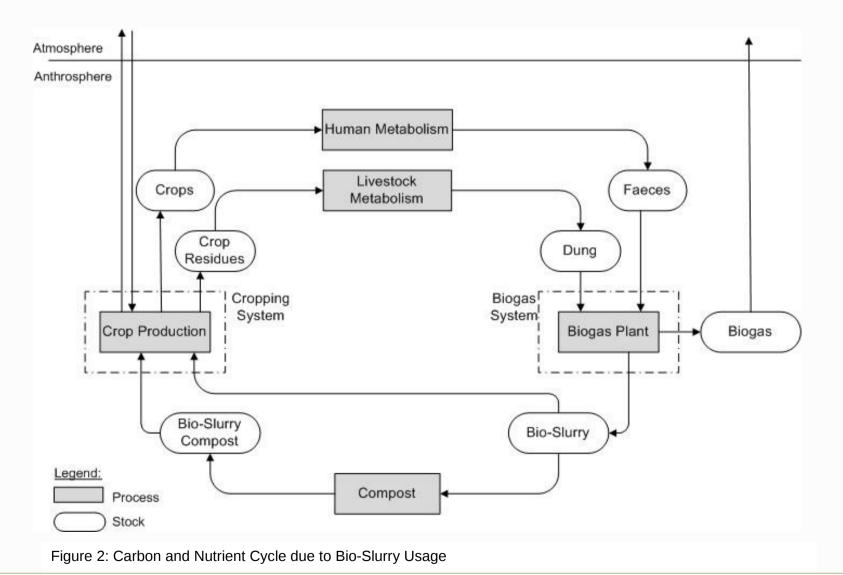
The Potential of Using Reclaimed Bio-Slurry as a Fertilizer

- Case Study for a Rural Area in the Kathmandu Valley, Nepal

> MES 2013 Conference 28.02.2013 Anna Friedrich anna.friedfisch@gmail.com

Biogas Technology in Nepal

- More than 260.000 installed biogas plants all over the country
- Fixed dome model *GGC 2047* (4 to 20 m³)


Figure 1: Toilet Attached GGC 2047 Biogas Plant

Biogas Project in Changunarayan

- In cooperation with NGO Beyond
- 25 toilet attached biogas plants in the village
- Problems:
 - Biogas plants did not run properly
 - Bio-slurry was underutilized
- Task:

Assess the site-specific bio-slurry's potential to meet nutrient requirements in crop cultivation

Material Flow Analysis

Biogas System

	Excreta [kg/day]	No.	Excreta [kg/household/ year]	Specific Gas Production [m³/kg] ^b	Gas Production [m³/household/year]
Human	1.5 ^a	6	3285	0.020	65.70
Cattle	10 ^c	1	3650	0.023	83.95
Buffalo	12 ^c	0.5	2190	0.023	50.37
a Berger (2008) b Sasse (1987); Neupane (2010) c Gurung (1997)				Total	200.02

 Table 1: Biogas Production in an Average Household in Changunarayan

	C [kg]	N [kg]	P [kg]	K [kg]
Input Substrate	583.20	43.11	23.14	22.56
Output Biogas Bio-Slurry	126.56 456.54	5.34 37.76	0 23.14	0 22.56

Table 2: Constitution of Input Substrate, Biogas and Bio-slurry

• Input:

- · Human faeces and urine
- · Cattle/ buffalo faeces
- TRetention 90 days
- TDigestion 15-20 °C

Cropping System

- Farmers cultivate 0.33 ha in rotation
- Staple crops included in calculations
- Neglection of other in- and output flows

Crop	Cultivated Land [ha/a]	Nutrient Uptake [kg/a]		
		Ν	Ρ	К
Potato	0.14	9.49	10.17	15.37
Rice	0.12	17.88	2.57	19.84
Maize	0.12	14.51	2.60	9.59
Wheat	0.10	12.10	2.17	12.74
Millet	0.05	11.37	1.18	0.13
Total		65.36	18.67	60.67

Table 3: Total Annual Nutrient Uptake by Staple Crops in an Average Household in Changunarayan

Results and Discussion

	N [kg/a]	P [kg/a]	K [kg/a]
Nutrient Demand	65.36	18.67	60.67
Nutrient Supply	37.76	23.14	22.56
Coverage [%]	57.78	123.92	37.18
Table 4: Coverage of Nutrient Demand			

- Relevant amount of nutrients can be recycled
- Behaviour in soil needs to be regarded more detailed
- Composting bio-slurry with harvest residues could increase fertilising potential

Bibliography

[Berger 2008]	Berger_ Wolfgang, Lorenz-Ladener_Claudia: Kompost-Toiletten. Staufen bei Freiburg, Germany: Ökobuch Verlag, 2008.
[Gayathri 2008]	Gayathri_A, Vadivel_A: Yield, Response and Nutrient Uptake by Potato as Influenced by Soil Fertility and Integrated Plant Nutrition System on Ultisols. Indian Journal of Agricultural Research: 303–306.
[Gurung 1997]	Gurung_Jit: Review of Literature on Effects of Slurry Use on Crop production. Kathmandu, Nepal:1997
[Karki 2009]	Karki_Amrit: Biogas as Renewable Source of Energy in Nepal Theory and Development. 2, Kathmandu, Nepal, 2009.
[Neupane 2010]	Neupane_Shreekrishna: Poultry Faeces Management by Bioconversion Technology with Modified GGC 2047 Model. Lalitpur, Nepal: 2010
[Paudel 2001]	Paudel_Giridhari: Farmers' land Management Practices in the Hills of Nepal: A Comparative Study of Watersheds with and without External Intervention. Bangkok, Thailand: 2001
[Pilbeam 2000]	Pilbeam, Tripathi, Sherchan, Gregory, Gaunt: Nitrogen Balances for Households in the Mid-hills of Nepal. Agriculture, Ecosystems and Environment 61–72 61–72: 2000
[Sasse 1987]	Sasse_Ludwig: Die Biogas-Anlage - Entwurf u. Details einfacher Anlagen. 2, Braunschweig: Vieweg, 1987.