

(Challenges of) Productive use promotion in Senegal

Gunnar Wegner

Introduction

- ERSEN in Senegal
 - PERACOD energy focal area
 - technology: SHS, hybrid minigrids (~750 inhabitants), solar streetlights
 - operators receive concessions from the state (fee-for-service model)
- Productive use promotion
 - target under EnDev
 - begin with minigrid villages, plan to move on to SHS villages
 - study (available on energypedia)
 - try to contact IMFs, but they are hesitant

Productive use promotion

- rationale for PU promotion
 - reliable consumption of electricity
 - stable income for service provider
 - more income for service provider
 - value added in the village
 - more direct impact on poverty alleviation than light only ("Armut bekämpfen, nicht nur beleuchten")
- Why don't productive uses flourish by themselves (without promotion)?
 - access to electricity
 - access to finance
 - access to know-how (entrepreneurial / technical)
 - technological barriers

Senegal experience

- productive uses do not spring up on their own
- access to finance seems to be single most important constraint
- study shows that all productive uses are highly profitable endeavours :
 - agriculture: milling, de-husking
 - service sector: sowing, mobile charging, hairdresser
 - cold chain: ice, water
- IMFs barely interested in financing:
 - generally not familiar with energy (focus on agriculture)
 - market too risky, too small (village size), geographically too difficult for the bigger IMFs (very remote villages)

Case study: solar grain mill (or: "How not to ...")

- pilot project to gather experience
- grain milling is a commonly found and frequently demanded productive use
- technology
 - DC motor
 - 2 × 150W panels
 - charge controller (bypassed for load)
- financing of the pilot project:
 - investment
 - energy side: PERACOD 100%
 - mechanical side: village association + MFI (credit)
 - operation cost
 - fees for milling

Case study: solar grain mill (or: "How not to ...")

- technology
 - purchase on local market, but first supplier suddenly not able to deliver
 - grainmill uses much more electricity than predicted, disappointing performance
 - starting resistor had to be exchanged
 - villagers manipulating the system, requiring repairs
- MFI
 - did deliver, but is now bankrupt
- One begins to understand people's hesitations:
 - Why invest with an institution in which I have no confidence?
 - Why invest into technology which I do not know?

If the mill does not work ...

Surprise, surprise

- field trips for other purposes
 - one is offered a cold coke in a village
 - someone proudly says : "Hey, I'm on skype, want to look?"
 - sowing machines, freezers ...
- productive use equipement from villager's initiative
- no IMF involved in financing
- only in minigrid villages
- procurement
 - equipment often second hand
 - from relative in town or abroad

Sales of ice cream

Welding

11.1.2011 Page 11

Where is research needed?

- pilot projects
 - Question: What to do a pilot project for?
 - pilot project requires A LOT of attention
- We want to prove: PU is attractive business opportunity for IMFs.
 - PERACOD to provide equipment and monitor technical performance
 - IMF for financing, payment collection etc.
- Which equipment does actually work?
 - under circumstances we find: heat, humidity, dust
 - in production / under active development
 - with DC power / in SHS villages

Outlook for activities in Senegal

- better investigation of productive uses that originate from local initiative
 - consumption: dataloggers
 - impact on economics
- productive use promotion in SHS villages
 - 3 fridges
 - 3 freezers
- find better equipment
 - for mills
 - more efficient
 - less error-prone / more robust
 - probably AC-coupled
 - in general: efficiency, robustness

Some pitfalls / difficulties

- tariffs setting
 - must be cost-recovering for operator
 - tariff is regulated to be ~0.20€ per kWh for productive use applications
 - not cost recovering for solar, wind or diesel-based minigrids
 - operator should be against selling electricity to productive use clients
 - must allow profitable operation of productive use
- technology not ripe
- equipment is inefficient: no A, A+ or A++ fridges in any of the shops in Dakar
- access to quality equipment is difficult for villagers
- don't know how to choose from different choices

Kommentare aus Bolivien

- mit lokalen Akteuren arbeiten, lokale Ressourcen mobilisieren um Subventionsanteil niedrig zu halten
- nur Produkte fördern, für die es auch einen Markt gibt; wichtig dafür: niedrige Verkaufspreise
- die echten Bedürfnisse der Zielgruppe kennenlernen, anstatt das Problem für die Lösung zu suchen
- Mit Mikrofinanzinstitutionen arbeiten.

Conclusion

- promotion of productive uses is a difficult business
- requires a lot of work
- no more studies needed we need practical experience
 - well-documented
 - well-monitored
- Workshop in Senegal this year!

Thank you!

Contact & more information

gunnar.wegner@gtz.de

