BE Alliance Soleil

ALLIANCE SOLEIL

Sommaire

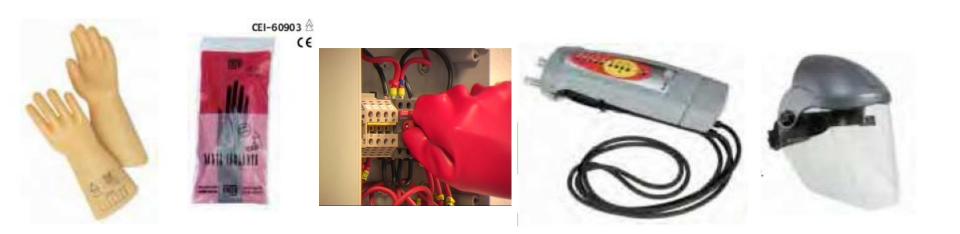
Introduction

Les chocs électriques

Protection des personnes

Protection des biens : surintensités

Protection des biens : foudre, surtensions et divers


Résumé

Eviter les accidents : un accident n'est jamais une fatalité

- Protection des installateurs / techniciens maintenance, intervenants chargés des réceptions, usagers :
 - Contre les contacts directs et indirects (défauts d'isolements)
 - Contre les court-circuits
 - Chutes / travaux en hauteur
- Protection des biens
 - Contre les risques d'incendie
 - Contre les effets de la foudre
 - Contre les effets de l'électrolyte des batteries (PVSI ou PV hybrides)

Nécessité de bien comprendre les particularités des installations PV

- En situation d'intervention
 - Respect des procédures d'installation
 - Utilisation d'équipements de protection individuelle (gants isolants, écran facial,...)
 - Utilisation de matériel de sécurité (outils isolants, vérificateur absence de tension, banderoles de signalisation,...)

Réf. QualiPV/ QualitENR

Travaux en hauteur

- Protection collective en priorité
 - Formation des intervenants aux travaux en hauteur et au montage d'échafaudage

- Si les protections collectives ne sont pas possibles: obligation d'utiliser des équipements de protection individuelle (E.P.I.)
 - Formation aux travaux en hauteur et à l'utilisation de harnais de sécurité, longe, casque...

Réf. QualiPV/ QualitENR

Qualification des intervenants

Au niveau des installateurs couvreurs

- Justification d'une expérience minimum pour la mise en œuvre d'installations photovoltaïques en conditions similaires
- Habilitation électrique BP
- Information sur le photovoltaïque raccordé réseau et ses dangers (électricité, câblage des modules)
- Formation pour des travaux en hauteur

Au niveau des installateurs électriciens

- Personnes justifiant d'une expérience minimum pour la mise en œuvre d'installations photovoltaïques en conditions similaires
- Personnes qualifiées disposant d'une habilitation électrique selon le type d'installations PV
- Personnes ayant reçu une formation au photovoltaïque couplé réseau et traitant particulièrement ses spécificités en termes de protection des personnes et des biens.
- Habilitation électrique BR(P)

Applicable, appliquée en Tunisie ??

Habilitations

BOV	Travaille au voisinage de la tension; peut connecter des modules à condition que les modules soient de classe II et connecteurs Classe II	couvreur
B1V	Exécutant électricien	
B2V	Chargé de travaux / assure la sécurité du personnel	
BR	Chargé d'intervention : essais, dépannage, mise en route,	Électricien PV
ВС	Chargé de consignation	

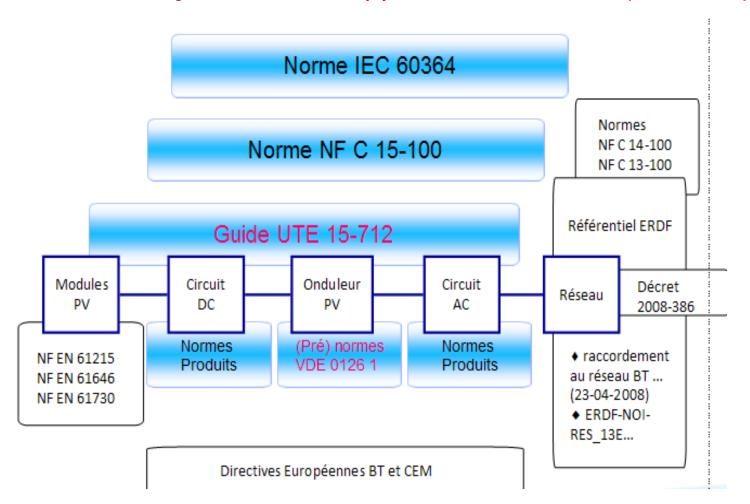
- $B \rightarrow$ niveau de tension (BT), $H \rightarrow$ niveau de tension (HT)
- $0 \rightarrow$ travaux d'ordre non électriques, $1 \rightarrow$ travaux d'ordre électrique,
- 2 → chargé de travaux
- V → travail au voisinage de la tension, C → Consignation, R → travail sous tension BT (mesures, dépannage, essais), T → travail sous tension

Particularités des installation PV

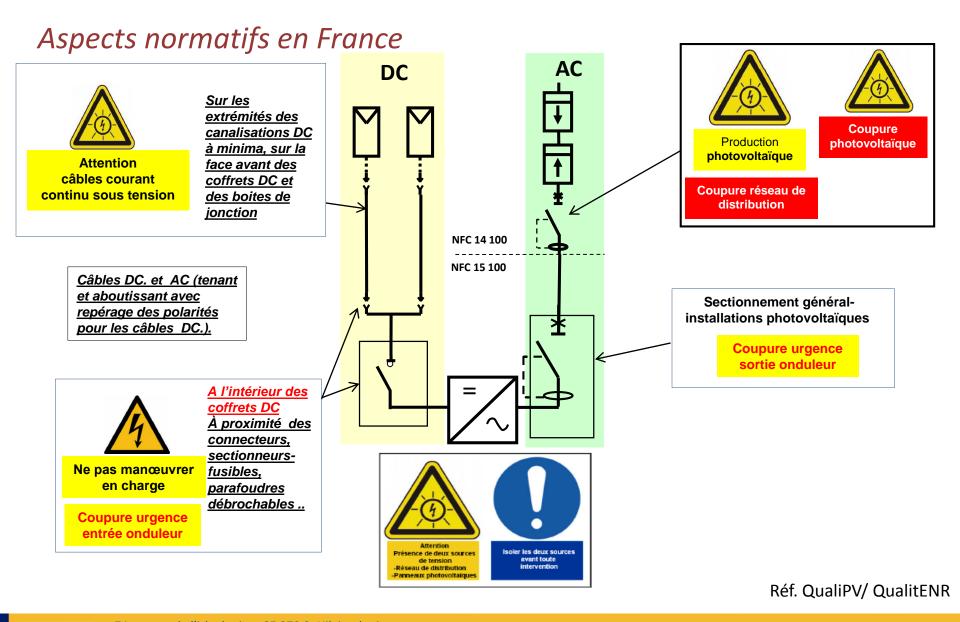
Spécificités PV

- Impossibilité d'interrompre le générateur
- Courant continu Arc électrique difficile à interrompre
 - Isc à peine supérieur (+10%) à Impp
 - Isc et Impp variable avec éclairement

Calibrage de protection impossible !



Réponses spécifiques PV


- Régime de terre IT
- Matériel spécifique PV (Normes Produits)
 - Tenue au courant Isc
 - o IP2X
 - Double isolation
- Formation des intervenants
 - Habilitation BR, BP photovoltaïque (norme NF-18-510)
- TST possible si Udc < 60V

Réf. QualiPV/ QualitENR

Aspects généraux normatifs en France, applicable en Tunisie (en cours)

Réf. QualiPV/ QualitENR

Sommaire

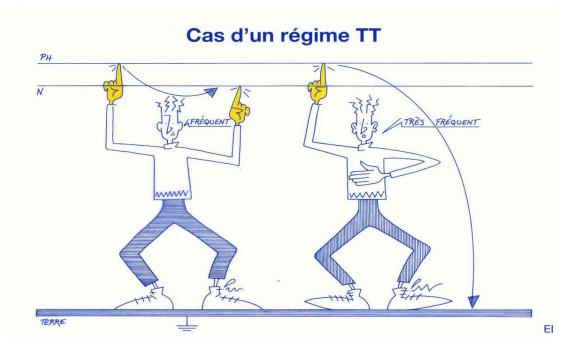
Introduction

Les chocs électriques

Protection des personnes

Protection des biens : surintensités

Protection des biens : foudre, surtensions et divers

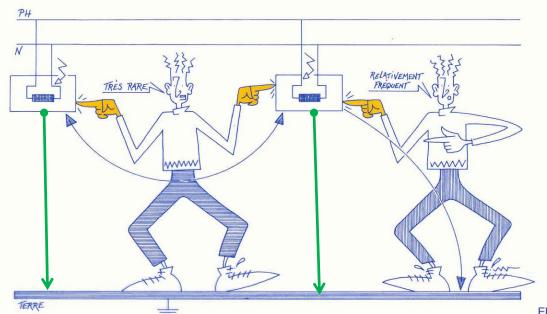

Résumé

Différentes possibilités de chocs électriques

- Par contact direct : contact d'une personne avec une partie active d'un circuit électrique (normalement sous tension)
 - entre deux parties actives
 - entre une partie active et la terre

Régime TT

Neutre du secondaire du transformateur relié à la Terre et Masse des récepteurs relié à la Terre de l'installation

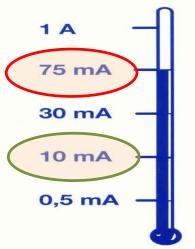

Différentes possibilités de chocs électriques

- Par contact indirect : contact d'une personne avec une masse mise sous tension par suite d'un défaut d'isolement
 - entre deux masses
 - entre une masse et la terre

Régime TT

Neutre du secondaire du transformateur relié à la Terre et Masse des récepteurs relié à la Terre de l'installation

Cas d'un régime TT



ED 1522 - 1995

EFFETS DU COURANT ALTERNATIF

Intensité

Arrêt du cœur

Seuil de fibrillation cardiaque irréversible

Seuil de paralysie respiratoire

Seuil de non lâcher Contraction musculaire

Seuil de perception Sensation très faible

EFFETS DU COURANT CONTINU

Intensité

Seuil de fibrillation cardiaque

Seuil de non lâcher

Seuil de perception

ED 1522 - 1995

Sommaire

Introduction

Les chocs électriques

Protection des personnes

Protection des biens : surintensités

Protection des biens : foudre, surtensions et divers

Résumé

Protection contre les chocs électriques

TBT: DC : V < 120 V AC : V < 50 V

Protection contre les contacts indirects pas nécessaire, mais protection contre les contacts directs

BT: DC: 120 V à 1500 V AC: 50 V à 1000 V

Protection contre les contacts directs et les contacts indirects :

- > Protection par déconnexion automatique « classe I »
 - Masse des équipements reliés à la terre
 - Si défaut d'isolation déclenchement d'une protection pour interrompre le défaut : DISJONCTEUR DIFFERENTIEL
- Protection par double isolation , « classe II »
 - Pas de nécessité de relier la masse des équipements à la terre
 - Conception des équipements avec double isolation ou isolation renforcée

CLASSES DE MATÉRIEL

Norme NF C 20-030

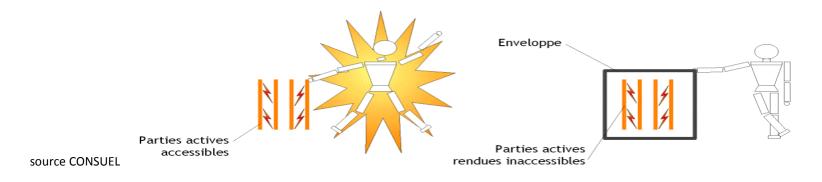
Classe 0: Matériel dans lequel la protection contre les chocs électriques repose sur l'isolation principale.
Ceci implique qu'aucune disposition n'est prévue pour le raccordement des parties conductrices accessibles (masses).

Classe I: Matériel dans lequel la protection contre les chocs électriques ne repose pas uniquement sur l'isolation principale mais qui comporte une mesure de sécurité supplémentaire seus forme de moyens de raccordement des parties conductrices accessibles (masses).

Classe II: Matériel dans lequel la protection contre les chocs électriques ne repose pas uniquement sur l'isolation principale, mais qui comporte des mesures supplémentaires de sécurité, telles que la double isolation ou l'isolation renforcée. Ces mesures ne comportent pas de moyen de mise à la terre et ne dépendent pas des conditions d'installation.

Les appareils de classe II peuvent être :

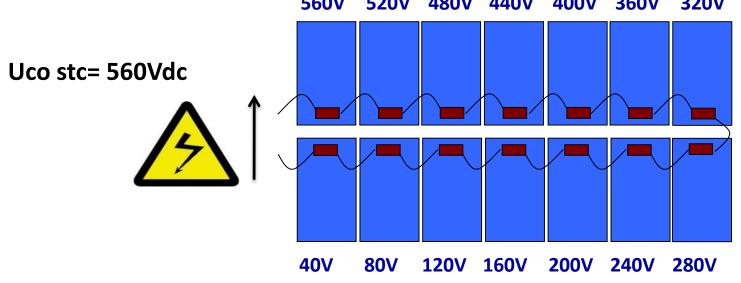
- totalement isolés : l'enveloppe durable et pratiquement continue m matière isolante enferme toutes les parties métalliques,
- sous enveloppe métallique : l'enveloppe métallique est pratique ment continue ; l'enveloppe métallique accessible n'est pas considérée comme étant une masse.


Ciasse III: Matériel dans lequel la protection contre les chocs électriques repose sur l'alimentation sous très basse tension de sécurité TBTS.



Protection contre les chocs électriques

O Protection :


- Pièces sous tension hors de portée des personnes
- Protection par enveloppe ou isolant
 - L'enveloppe ne doit pouvoir être retirée qu'avec l'aide d'un outil
 - L'enveloppe doit avoir un degré de protection minimum <u>IP 2x ou IP xxB</u>

Protégé contre les corps solides supérieurs à 12,5 mm (ex : doigt de la main)

Protection contre les chocs électriques : contact directs
560V 520V 480V 440V 400V 360V 320V

• Exemple: 14 modules (Uco=40 V) en série ont une tension de circuit ouvert Uco = 560 Vdc!!

En PV : 60 V < Ucomax < 1000 V en pratique

Mettre des connecteurs pour se protéger contre les contacts directs

Protection contre les chocs électriques

- PV côté CC : niveau BT (Uco entre 120 et 1500 V)
- Dimensionnement des composants (selon UTE 15-712-1):

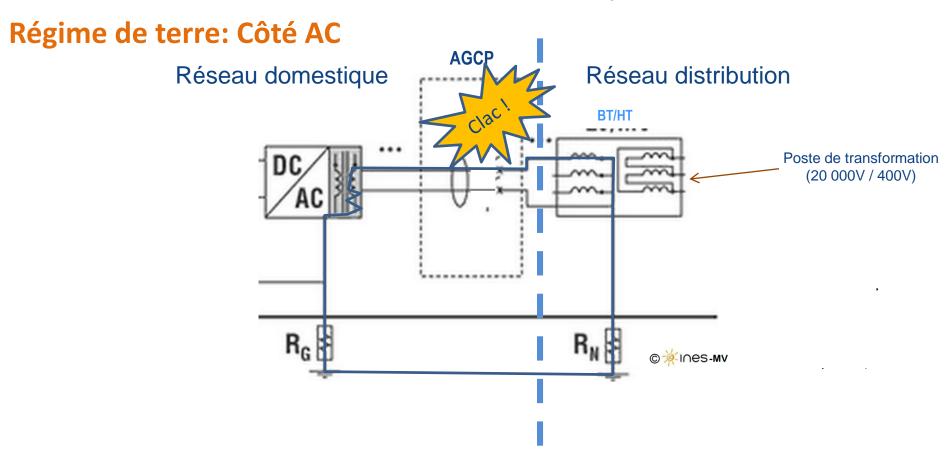
Vocmax = 1,20 Voc

(Voc = 0,6 V à 25°C, une cellule à -25°C, et si Δ Voc/Voc = -0,34%/°C x (25°C – (-25 °C)) x 0,6 V = -0,102V, soit (0,102V) / 0,6 V = 0,17, soit +17 %)

Iscmax = 1,25 Isc STC (cas fort albédo : 1250 W/m²) – protections élec.

(I = Immp stc pour le calcul des chutes de tension)

Protection contre les chocs électriques


Côté CC

- Système CC flottant (pratique européenne)
- Matériel de classe II (modules, câblage, boites de jonction)
- Détection d'isolement côté CC (généralement intégré dans l'onduleur – CPI: contrôleur permanent d'isolement)

Côté CA

- Disjoncteur différentiel côté CA au niveau du point d'injection
- Carcasse onduleur mis à la terre.

La protection par déconnexion automatique côté CA n'empêche pas la tension d'être présente, donc le danger persiste tant qu'il fait jour.

Une polarité est raccordée à la T (le Neutre au poste de transformation EDF)
Les masses sont raccordées à la T
→ Terre local créée lors de l'installation électrique C15-100

Il s'agit du régime ... **T T**

Ce schéma de liaison à la terre (SLT)

différentielle qui déclenche au

premier défaut d'isolement.

permet une protection

Réf. QualiPV/ QualitENR

Protection des biens et des personnes Régime de Terre: côté DC POLARITEE CPI*

Isolation galvanique entre les polarités DC et les masses avec mise à la terre des masses

- → Le régime de terre est dit à «potentiel flottant » pour la protection des personnes.
- → La mise à la terre des masses participe à la détection d'un défaut d'isolation et à la protection des personnes.

ERREUR de l'intervenant: En cas de contact avec un conducteur actif, l'intervenant est protégé (impédance élevée entre les terre et les polarités).

S'il y a déjà un défaut, l'intervenant peut être soumis à une tension qui peut atteindre plusieurs centaines de volts danger d'électrisation.

*Le CPI est systématiquement intégré à l'onduleur

Réf. QualiPV/ QualitENR

Côté DC:

Batteries: mise en œuvre (selon UTE 15-712-2 juillet 2013)

Local séparé si Ah x U > 1000

- Emplacement dédié
 - o protection contre feu, eau, vibrations
 - Protection contre risques générés par la batterie (explosion, électrolyte)
 - Accès aux personnes autorisées
 - Protection contre haute température et humidité

Batteries: mise en œuvre (selon UTE 15-712-2 juillet 2013)

Local batterie (matériaux incombustibles)

- Espace libre suffisant autour des batteries (sécurité et accès pour maintenance: 0,60 m minimum
- Porte vérrouillable uniquement de l'extérieur (anti-panique) accès par l'extérieur
- Pas de communication entre local d'habitation et local batterie
- Si batteries ouvertes : bac de rétention (au moins le volume d'un élément ou monobloc) ou alors sol résistant à l'acide sulfurique (carrelage, peinture spéciale)
- Ventilation naturelle ou mécanique (directement vers l'extérieur)
- Affichage : interdit de fumer, danger explosion, accès interdit sauf personnel habilité, .

Batteries: mise en œuvre (selon UTE 15-712-2 juillet 2013)

Enveloppe de batterie (coffret ou armoire)

- Matériau résistant à l'électrolyte
- Enveloppe étanche avec ventilation vers l'extérieur
- Eléments avec électrolyte liquide: en escalier pour maintenance (surélévation)
- Ventilation naturelle ou mécanique (directement vers l'extérieur)
- Affichage : interdit de fumer, danger explosion, accès interdit sauf personnel habilité,

Batteries: mise en œuvre (selon UTE 15-712-2 juillet 2013)

Eléments accumulateurs

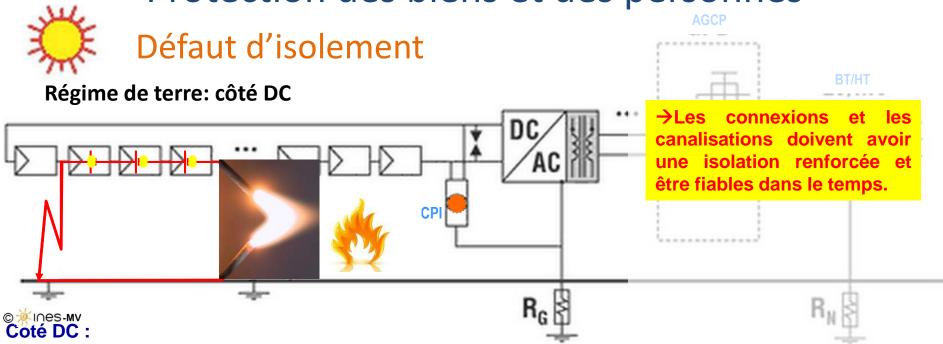
- Batterie ouverte avec bouchon antidéflagrant (si possible : bouchons à recombinaison des gaz
- Marquage sur chaque élément :
 - Exterieur (numéro d'ordre)
 - Date de mise en service sur chaque
- Isolation des barres de connexion
- Conducteurs connecté aux batteries : câble unipolaire et non jointif jusqu'au dispositif de coupure pour éviter tout court-circuit
- Si batterie en // : même longueur des connexions pour éviter tout déséquilibre de tension

Sommaire

Introduction

Les chocs électriques

Protection des personnes


Protection des biens : surintensités

Protection des biens : foudre, surtensions et divers

Résumé

Protection des modules PV, des câbles des champs PV

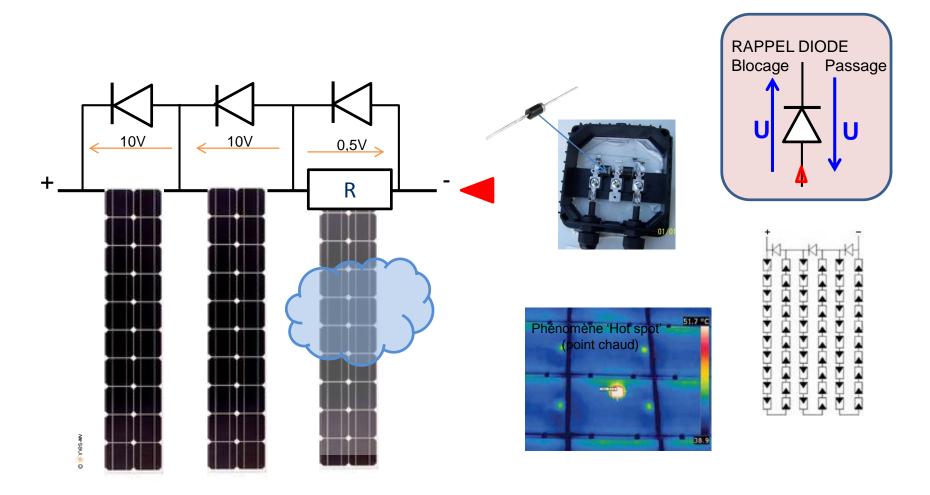
- 1. Protection contre les défauts d'isolement : arcs électriques (câbles abîmés)
- 2. Protection contre l'ombrage partiel: diode bypass toutes les 18 ou 20 cellules (ou moins de 18 cellules)
- 3. Protection contre les effets des courants inverses (cas de chaines en //) : fusibles (dépend PVRR, PVSI)

Isolation galvanique entre les polarités DC et les masses avec mise à la terre des masses

- → Les masses sont mises à la terre pour la protection contre les surtensions.
- → Matériel spécifique au PV supportant Iscmax et Uocmax et à isolation double ou renforcée
- → Mise en œuvre soignée et durable

Premier défaut ; Impossible d'éteindre le générateur !

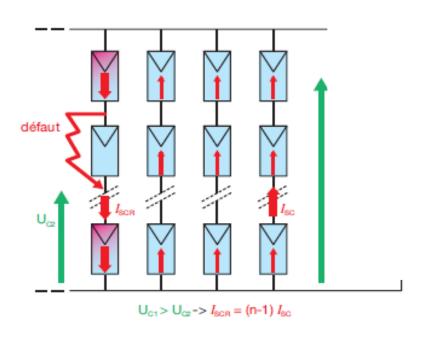
→L'onduleur détecte et prévient le défaut grâce au CPI.

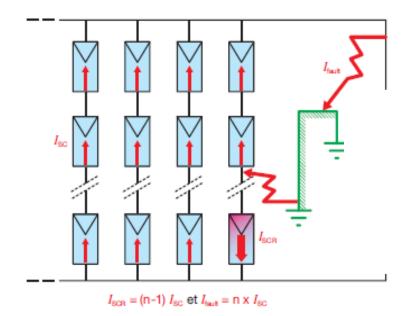

Une intervention de dépannage doit être déclenchée car en cas de 2ème défaut...

...risques de dommages graves!

Réf. QualiPV/ QualitENR

Diode bi-pass contre les effets d'ombrage


VOIR AUSSI le PPTx dédié aux Masques



Réf. QualiPV/ QualitENR

Problème de surintensité lié au courant inverse (Irm)!

Si plus de 2 branches en parallèle?

Protection de chaque chaîne et sur chaque polarité selon la C15-712-1 et C15-712-2 ; si fusible, alors de **type « gPV »**

Problème de surintensité lié au courant inverse (Irm) (PVRR)

Selon nb de chaines, protection de chaque chaîne et sur chaque polarité par fusible ou disjoncteur suivant la C15-712-1 selon section section 8.

Problème de surintensité lié au courant inverse ou courant batterie (PVSI)

Protection de chaque chaîne et sur chaque polarité par fusible ou disjoncteur suivant la C15-712-2-juillet 2013

En général : Irm < In fusible > 1,1 Iscmax (tableau 2, section 8.1.2) avec Iscmax = 1,25 Isc stc (selon Annexe A, p.54)

Protection des câbles, des batteries

Globalement selon UTE 15-712-2, section 8

Quelques clés :

- Protection câble batterie vers régulateur (vérifier le courant le plus élevé (charge selon champ PV ou décharge batterie selon récepteurs) tenir compte aussi du courant de court-circuit de la batterie (section 8.2.1)
- Protection câble régulateur : tenir compte du courant utilisation (et rendement onduleur si onduleur connecté sur sortie régulateur) – section 8.2.2
- Protection câble onduleur : tenir compte du courant des récepteurs, du rendement onduleur et des éventuels courants de démarrage des moteurs.

34

Sommaire

Introduction

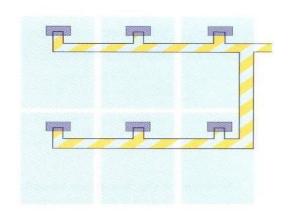
Les chocs électriques

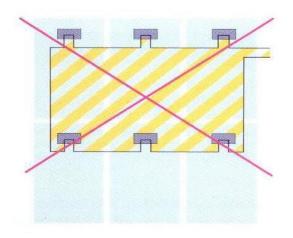
Protection des personnes

Protection des biens : surintensités

Protection des biens : foudre, surtensions et divers

Résumé


Protection contre les effets de la foudre (effets indirects)


1. Réduire les boucles d'induction dans tous les cas

2. Liaison obligatoire des masses métalliques

3. Parafoudres obligatoires selon les cas

Protection contre la foudre : éviter les boucles d'induction

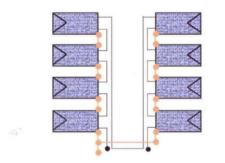


Figure 21 - Bon câblage : limitation des aires de boucles induites

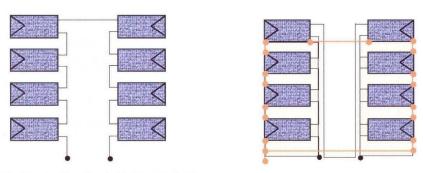


Figure 22 - Mauvais câblage : boucle induite entre polarités Figure 23 - Mauvais câblage : boucle induite entre une polarité et la masse

Protection contre la foudre : éviter les boucles d'induction

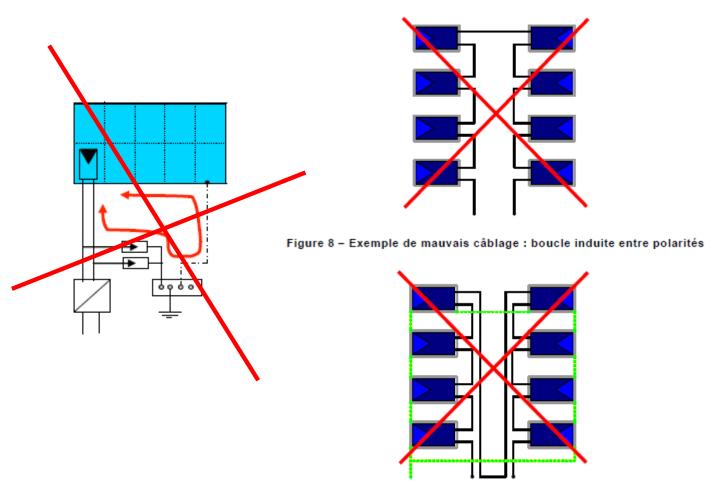
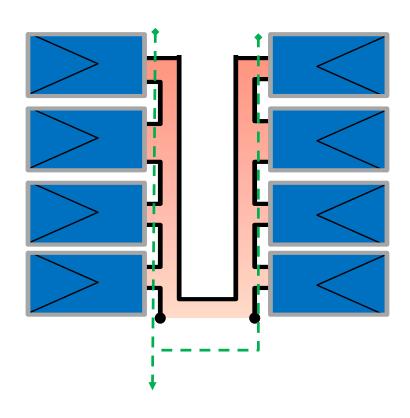
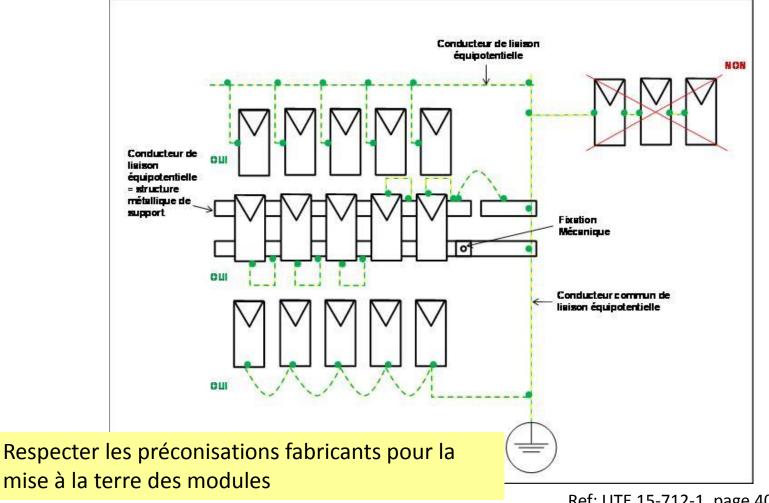



Figure 9 - Exemple de mauvais câblage : boucle induite entre une polarité et la masse

Ref: UTE 15-712-1, page 39

Protection contre la foudre : cheminent jointif des câbles (+/-,LE)



Pour minimiser les tensions induites dues à la foudre, la surface de l'ensemble des boucles doit être aussi faible que possible, en particulier pour le câblage des chaînes PV.

Les câbles d.c. et le Conducteur d'équipotentialité doivent cheminer côte à côte.

Ref: UTE 15-712-1, page 40

Protection contre la foudre : liaison obligatoire des masses métalliques

Section cuivre 6 mm² minimum

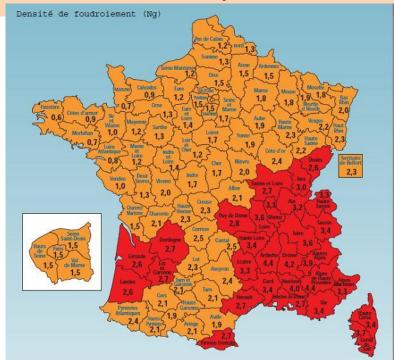
Ref: UTE 15-712-1, page 40 et UTE 15-712-2

Protection contre la foudre : liaison obligatoire des masses métalliques

- Mise à la terre également des chemins de câbles métalliques (vers liaison équipotentielle)
- Masse de l'onduleur relié avec 6mm² minimum (Cu) au conducteur de protection

 Mise en œuvre : Les conducteurs cuivre nu ne doivent pas cheminer au contact des parties en aluminium

Ref: UTE 15-712-1, page 40


Protection contre la foudre : quand mettre un parafoudre ?

 Cela dépend de la densité géographique des zones géographiques

Quelle est la situation en Tunisie ?

exemple de la France dans les diapos suivantes

France : Côté AC quand mettre un parafoudre ?

L'analyse du risque comporte trois étapes :

- 1) évaluation du niveau d'exposition du site aux surtensions de foudre
- 2) évaluation des conséquences des perturbations sur les matériels et la sécurité des personnes
- 3) résultat de l'analyse.

Caractéristiques et alimentation du bâtiment	Densité de foudroiement (Ng) Niveau kéraunique (Nk)						
	Ng ≤ 2,5 Nk ≤ 25	Ng ≥ 2,5 Nk ≥ 25					
Bâtiment équipé d'un paratonnerre	Obligatoire (2)	Obligatoire (2)					
Alimentation BT par une ligne entièrement ou partiellement aérienne (3)	Non obligatoire (4)	Obligatoire (5)					
Alimentation BT par une ligne entièrement souterraine	Non obligatoire (4)	Non obligatoire ⁽⁴⁾					
L'indisponibilité de l'installation et/ou des matériels concerne la sécurité des personnes ⁽¹⁾	Selon analyse du risque	Obligatoire					

(1) c'est le cas par exemple :

- de certaines installations où une médicalisation à domicile est présente ;
- d'installations comportant des Systèmes de Sécurité Incendie, d'alarmes techniques, d'alarmes sociales, etc.
- (2) Dans le cas des bâtiments intégrant le poste de transformation, si la prise de terre du neutre du transformateur est confondue avec la prise de terre des masses interconnectée à la prise de terre du paratonnerre (voir annexe G), la mise en œuvre de parafoudres n'est pas obligatoire. Dans le cas d'immeubles équipés de paratonnerre et comportant plusieurs installations privatives, le parafoudre de type 1 ne pouvant être mis en œuvre à l'origine de l'installation est remplacé par des parafoudres de type 2 (In ≥ 5 kA) placés à l'origine de chacune des installations privatives (voir annexe G).
- (3) Les lignes aériennes constituées de conducteurs isolés avec écran métallique relié à la terre sont à considérer comme équivalentes à des câbles souterrains.
- (4) L'utilisation de parafoudre peut également être nécessaire pour la protection de matériels électriques ou électroniques dont le coût et l'indisponibilité peuvent être critique dans l'installation comme indiqué par l'analyse du risque.
- (5) Toutefois, l'absence d'un parafoudre est admise si elle est justifiée par l'analyse du risque définie en 6.2.2.

France : Côté DC quand mettre un parafoudre ?

Parafoudre DC type2 obligatoire si:

NFC15-712 Tableau 9 § 13.2.2.1

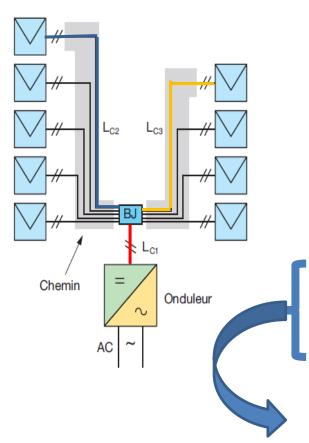
- L'installation est équipée d'un paratonnerre
- La longueur des câbles DC dépasse la longueur critique fonction de:
 - La zone de foudroiement
 - La nature du bâtiment

Type d'installation	Locaux d'habitation individuelle	Centrale de production au sol	BâtimentsTertiaires/Indust riels/Agricoles				
Lcrit (en m)	115/Ng	200/Ng	450/Ng				
L ≥ Lcrit	Para	foudre(s) obligatoire(s) côté l	DC ⁽²⁾				
L < Lcrit	Parafo	udre(s) non obligatoire(s) côt	é DC ⁽¹⁾				

Note 1 : L'utilisation de parafoudres peut également être nécessaire pour la protection d'installations photovoltaïques dont le coût et l'indisponibilité peuvent être critiques.

Note 2 : La mise en œuvre de parafoudres peut ne pas être indispensable dans le cas où tous les câbles DC sont protégés par des enveloppes métalliques assurant un écran réduisant les effets électro magnétiques.

NB: le parafoudre doit être installé en priorité à proximité de l'onduleur, en général.


Egalement valide pour PVSI, voir Guide UTE 15-712- 2 juillet 2013, section 13

Réf. QualiPV/ QualitENR

ALLIANCE SOLEIL

France : Côté DC quand mettre un parafoudre ?

Calcul de L

$$L = L_{c1} + L_{c2} + L_{c3}$$

En cas de plusieurs onduleurs, la longueur à considérer est la somme de toutes les longueurs L par onduleur

Exemple: Ng (Ng = Nk/10) = 4 (Sud-Est de la France)

Lcrit = 115/4 = 28,75 m si locaux d'habitation individuels

- Parafoudres DC obligatoires si L ≥ 28,75 m
- Le parafoudre se pose en priorité à proximité de l'onduleur

(c'est l'appareil le plus fragile/couteux)

Si la <u>distance</u> entre le parafoudre et le champ PV est supérieure à 10m Et si la tension de protection du parafoudre (Up) est supérieure à la moitié de la tension de tenue au choc du module (Uw module) Alors il est nécessaire d'ajouter un parafoudre près du champ PV.

Up ≤ ½ x Uw → 2ème parafoudre non obligatoire

France : Côté DC choix du parafoudre

Il faut vérifier les 4 paramètres suivants pour valider un parafoudre Type 2

In: courant nominal de décharge d'un parafoudre en onde 8/20micros. (ek kA)

Up: niveau de protection d'un parafoudre

Ucpv: tension maximale de régime permanent (fonctionnement normal)

Iscpv: tenue en court-circuit d'un parafoudre

France : Côté DC choix du parafoudre

- I_n: courant nominal de décharge d'un parafoudre en onde 8/20micros (en kA) – capacité d'écoulement répétitive I_n minimum de 5kA, Un I_n supérieur procurera une durée de vie plus élevée.
- Up: niveau de protection d'un parafoudre

La valeur de Up doit être inférieure à 80% de la valeur de tension assignée au matériel à protéger (voir tableau diapo suivante)

France : Côté DC choix du parafoudre

Tableau 7 – Tension assignée de tenue aux chocs Uw

Choix de Up

Tension			U _w [V]				
maximale système inférieure ou égale à [V]	Module PV de classe A ^{a)}	Module PV de classe B ^{a)}	Convertisseur PV b)				
100	1500	800					
150	2500	1500					
300	4000	2500	2500 (exigence minimale)				
600	6000	4000	4000				
1000	8000	6000	6000				
	Toutes les tens a) NF EN 61730 b) CEI 62109-1	ions sont extraites 0-2	des normes :				

Les modules ont en général une tension max de 1000 V, donc Uw = 8000 V pour les modules de classe A, alors **Up** du parafoudre doit être inférieure à 8000 x 0,8 = 6400 V. Le Up de ce parafoudre doit être également correct pour l'onduleur (6000 x 0,8 = 4800 V) sur la même ligne...

France : Côté DC choix du parafoudre

Choix de Ucpv

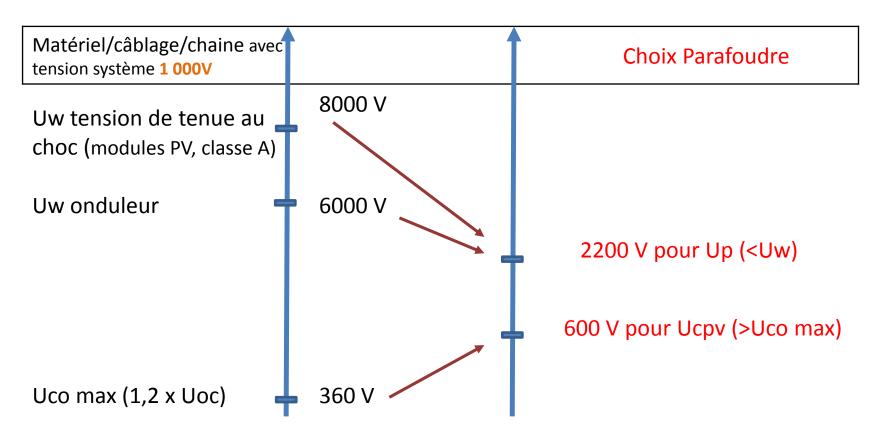
La tension maxi du générateur ne doit pas dépasser Ucpv du parafoudre :

Ucpv > Uocmax

Si Uoc max est égale à 450 V, un parafoudre avec Ucpv de 800 ou 1000 V est convenable.

France : Côté DC choix du parafoudre

Choix de Iscpv


Le parafoudre (et son déconnecteur interne ou externe) doit avoir un courant supérieur au courant Iscmax du générateur:

Iscpv > Iscmax du générateur PV

Ex: Si Iscmax (soit 1,25 Isc stc) est de 35 A, un parafoudre avec Iscpv de 60 A est convenable.

France : Côté DC choix du parafoudre

Résumé avec étude de cas (2 chaines avec Uoc chaine = 300 V et Isc groupe = 18 A)

Sur une idée de Ryad Belgacem, Gabes, ANME

ALLIANCE SOLEIL

Résumé avec étude de cas (2 chaines avec Uoc chaine = 300 V et Isc groupe = 18 A)

- Parafoudres de Type 2 pour Photovoltaïque
- In: 15 kA

In doit être > à 5kA

- Imax: 40 kA
- Modules enfichables
- Télésignalisation (option)
- Conformes NF EN 50539-11

Référence CITEL		DS50PV-500/51	DS50PV-600/51	DS50PV-800G/51	DS50PV-1000G/51
Description		Parafoudre PV de type 2 Débrochable	 Parafoudre PV de type 2 - Débrochable 	Parafoudre PV de type 2 - Débrochable	Parafoudre PV de type 2 - Débrochable
Réseau	Uocstc	Réseau PV 500 Vdc	Réseau PV 600 Vdc	Réseau PV 800 Vdc	Réseau PV 1000 Vdc
Mode de connexion		+/-/PE	+/-/PE	+/-/PE	+/-/PE
Mode de protection		MC	MC	MC/MD	MC/MD
Tension de régime perm. max	Ucpv	600 Vdc	720 Vdc	960 Vdc	1200 Vdc
Tenue au courant de court-circuit PV	Iscpv	1000 A	1000 A	1000 A	1000 A
Courant de fonct. permanent - courant de fuite à Uc	Icpv	< 0.1 mA	< 0.1 mA	< 0.1 mA	<0.1 mA
Courant residuel -courant de fuite à Ucpv	lpe	< 0.1 mA	< 0.1 mA	aucun	aucun
Courant de décharge nominal	In	15 kA	15 kA	15 kA	15 kA
Courant de décharge maximal - tenue max. 8/20 µs	Imax	40 kA	40 kA	40 kA	40 kA
Courant de décharge maximal total - tenue max. 8/20 µs	Itotal	60 kA	60 kA	60 kA	60 kA
Niveau de protection MC/MD @ In	Up	2.2 kV	2.8 kV	2 / 3.6 kV	2.6 / 4.6 kV
Courant de court-circuit admissible	Iscpv	1000 A	1000 A	1000 A	1000 A
Déconnecteurs					
Déconnecteur thermique		Interne			
Fusibles associés		sans			

France : Côté DC Mise en place des parafoudres

Pour une protection optimale, il faut:

- Alimenter le parafoudre au travers d'une protection de découplage en amont. Privilégier le fusible au disjoncteur
- Raccorder la sortie du parafoudre avec une section au moins égale à la section d'entrée avec un minimum de 6mm².
- Raccorder le parafoudre sur un conducteur principal de terre (16 mm²) sous 50cm
- Travailler l'équipotentialité des terres au niveau des parafoudres pour qu'elle soit la plus courte possible.

France : Côté DC Mise en place des parafoudres

- 45 -

UTE C 15-712-2

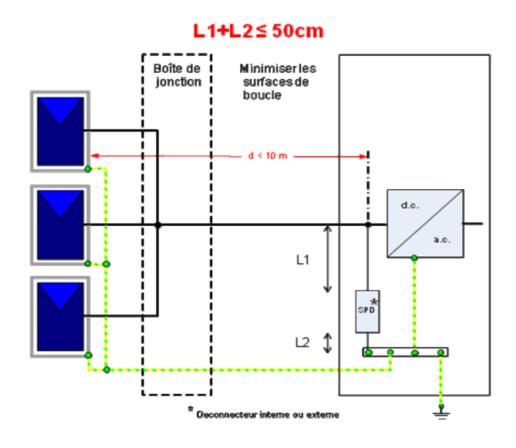


Figure 7 - Mise en œuvre des parafoudres sur la partie générateur PV - Distance d < 10 m

France : Côté DC Mise en place des parafoudres

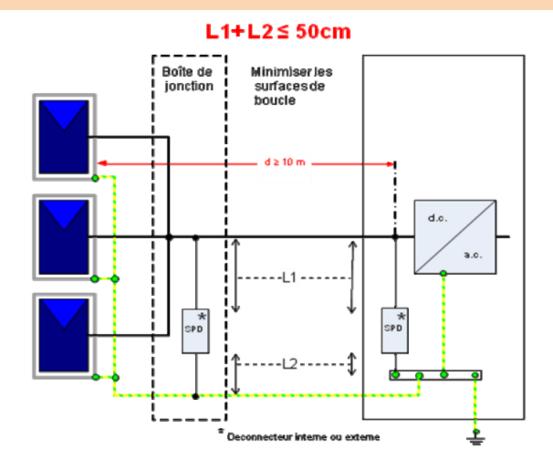


Figure 8 - Mise en œuvre des parafoudres sur la partie générateur PV - Distance d ≥ 10 m

Protection contre la foudre

Documentations de référence:

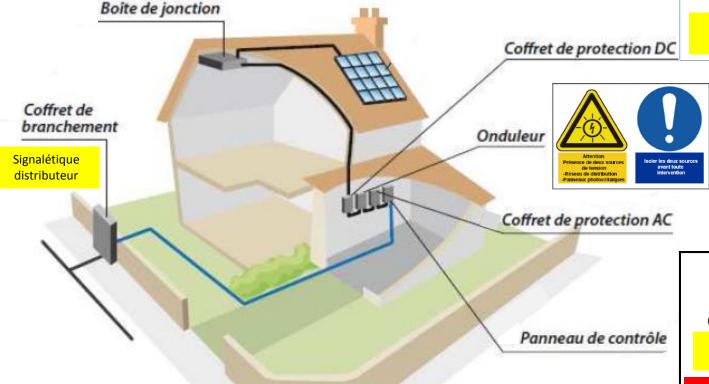
- Guide ADEME: Protection contre les effets de la foudre dans les installations faisant appel aux énergies renouvelables
- Guide C15-443: Protection des installations électriques basse tension contre les surtensions d'origine atmosphérique ou dues à des manœuvres - Choix et installation des parafoudres.
- Guide C61-740: Parafoudres basse tension et Parafoudres pour applications spécifiques incluant le courant continu - Partie 52: Principes de choix et d'application - Parafoudres connectés aux installations photovoltaïques.
- Guide C15-712-1: Installations photovoltaïques raccordées au réseau public de distribution – Partie 13: Protection contre les surtensions d'origine atmosphérique ou dues à des manœuvres.
- Guide C15-712-2 : Installations photovoltaïques autonomes non raccordées au réseau public de distribution avec stockage par batteries - Partie 13: Protection contre les surtensions d'origine atmosphérique ou dues à des manœuvres

Protection des biens et des personnes Signalisation

Ne pas manœuvrer en charge

<u>A l'intérieur des boites de</u>
<u>jonctions</u>
<u>À proximité des connecteurs,</u>
<u>sectionneurs-fusibles,</u>
parafoudres débrochables..

Attention câbles courant continu sous tension


Sur les extrémités des canalisations DC à minima, sur la face avant des coffrets DC et des boites de jonction

Ne pas manœuvrer en charge

A l'intérieur des coffret s DC À proximité des connecteurs, sectionneurs-fusibles, parafoudres débrochables..

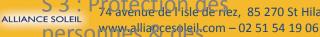
Coupure urgence entrée onduleur

Sectionnement général-Installation photovoltaïque

Coupure urgence sortie onduleur

Production photovoltaïque

Coupure réseau de distribution


Coupure photovoltaïque

Source GIMELEC

Attention aux couples électrolytiques!

×1	Le métal B est attaqué								Contact pratiquement indifférent										Le métal A est attaqué								
Métal A :	Platine	ŏ	Inox passivé	Argent	Mercure	Nickel	Arcap	Cuivre	Bronze d'alu	Laiton	Bronze	Etain	Plomb	Duralumin	Acier doux	Арах Н	Alu 99,5%	Acier dur	Duralinox	Cadmium	Ferpur	Almasiium	Chrome	Sn75-Zn25			
Platine	0	130	250	350	350	430	450	570	600	650	770	800	840	940	1000	1065	1090	1095	1100	1100	1105	1105	1200	1350			
Or	130	0	110	220	220	300	320	440	470	520	640	670	710	810	870	935	960	965	970	970	975	975	1070	1230			
lnox passivé	250	110	0	100	110	180	200	320	350	400	520	550	590	690	750	815	840	845	850	850	855	855	950	1100			
Argent	350	220	100	0	0	80	100	220	250	300	420	450	490	590	650	715	740	745	750	750	755	755	850	1010			
Mercure	350	220	110	0	0	80	100	220	250	300	420	450	490	590	650	715	740	745	750	750	755	755	850	1010			
Nickel	430	300	180	80	80	0	20	140	170	220	340	370	410	510	570	635	660	665	670	670	675	675	770	930			
Arcap	450	320	200	100	100	20	0	120	150	200	320	350	380	490	550	615	640	645	650	650	655	655	750	910			
Cuivre	570	440	320	220	220	140	120	0	30	80	200	230	270	370	430	495	520	525	530	530	535	535	630	790			
Bronze d'alu	600	470	350	250	250	170	150	30	0	50	170	200	240	340	400	465	490	495	500	500	505	505	600	760			
Laiton	650	520	400	300	300	220	200	80	50	0	120	150	190	290	350	415	440	445	450	450	455	455	550	710			
Bronzo	770	640	520	420	420	340	330	200	170	120	0	30	70	170	230	205	320	325	330	330	335	335	430	590			
Etain	800	670	550	450	450	370	350	230	200	150	30	0	40	140	200	265	290	295	300	300	305	305	400	560			
Plomb	840	710	590	490	490	410	380	270	240	190	70	40	0	100	160	225	250	255	260	200	265	265	360	520			
Duralumin	940	810	690	590	590	510	490	370	340	290	170	140	100	0	60	125	150	155	160	160	165	165	260	420			
Acier doux	1000	870	750	650	650	570	550	430	400	350	230	200	160	60	0	65	90	95	100	110	105	105	200	360			
Alpax H	1065	935	815	715	715	635	615	495	465	415	295	265	225	125	65	0	25	30	35	35	40	40	135	295			
Alu 99,5%	1090	960	840	740	740	660	640	520	490	440	320	290	250	150	90	25	0	5	10	10	15	15	110	270			
Acier dur	1095	965	845	745	745	665	645	525	495	445	325	295	255	155	95	30	5	0	5	5	10	10	105	265			
Duralinox	1100	970	850	750	750	670	650	530	500	450	330	300	260	160	100	35	10	5	0	0	5	5	100	260			
Cadmium	1100	970	850	750	750	670	650	530	500	450	330	300	200	160	110	35	10	5	0	0	5	5	100	260			
Fer pur	1105	975	855	755	755	675	655	535	505	455	335	305	265	165	105	40	15	10	5	5	0	0	95	255			
Almasilium	1105	975	855	755	755	675	655	535	505	455	335	305	265	165	105	40	15	10	5	5	0	0	95	255			
Chrome	1200	1070	950	850	850	770	750	630	600	550	430	400	360	260	200	135	110	105	100	100	95	95	0	25			
Sn75-Zn25	1350	1230	1100	1010	1010	930	910	790	760	710	590	560	520	420	360	295	270	265	260	260	255	255	25	0			
Zinc	1400	1270	1150	1050	1050	970	950	830	800	750	630	600	560	530	400	335	310	305	300	300	295	295	200	40			
Magnésium	1950	1820	1700	1600	1600	1520	1500	1380	1350	1300	1180	1150	1100	1010	950	885	860	855	850	850	845	845	750	590			

(Source : SER-COPREC)

Sécurité des biens et des personnes

Sommaire

Introduction

Les chocs électriques

Protection des personnes

Protection des biens : surintensités

Protection des biens : foudre, surtensions et divers

Résumé

Résumé : impact sur les **réceptions**

Il faut vérifier :

Côté DC

- Matériel de classe II (modules, câblage, boites de jonction)
- Système DC flottant (pratique européenne) : ni le +, ni le relié à la terre
- Pertinence ou non de fusible chaines (gPV)
- Détection d'isolement côté CC (généralement intégré dans l'onduleur PVRR)
- Liaison équipotentielle des masses métalliques (6mm² minimum)
- Parafoudre (type, position, LE)

Côté AC

- Disjoncteur différentiel côté AC
- Mise à la terre onduleur
- Parafoudre (type, position, LE)

Résumé : impact sur les réceptions cas PVSI ou pompage

Il faut vérifier :

Côté DC

- Matériel de classe II (modules, câblage, boites de jonction)
- Système DC flottant (pratique européenne) : ni le +, ni le relié à la terre
- Détection d'isolement côté CC (généralement intégré dans l'onduleur)
- Liaison équipotentielle des masses métalliques (6mm² minimum)
- Batteries (bac de rétention, local séparé selon Capacité, caches bornes, étiquetage, etc....)

Côté AC

- Disjoncteur différentiel côté AC au niveau du point d'injection
- Mise à la terre onduleur
- Neutre de l'onduleur PVSI raccordé à la terre (pour fonctionnement du différentiel)

Merci pour votre attention