## TRAINING PACKAGES DEVELOPMENT

**PACKAGE II: ELECTRICAL** 

PRESENTER: DR EVAN MURIMI WANJIRU, PHD, CEM.









## Presentation structure

Target group
Objectives
Expected impact
Sources of electrical energy
Electricity consumption
Components of utility bill
Modules- 8 of them

"The age we live in is a busy age; in which knowledge is rapidly advancing to perfection." -Jeremy Bentham

## Target group

- Factory electricians
  - They deal with day-to-day running of factories.
  - They manage electrical equipment.

## Objectives

#### Main objective

Train, equip and sensitize factory electricians with thorough information on electrical energy saving opportunities and related cost in a tea factory.

#### Specific objectives

- Provide thorough understanding of the tariff structure with its components
- Enlighten on various electrical energy consumers in a factory and their impact on cost.
- Quantify the impact of efficient operation of electrical equipment
- Sensitize the electricians on importance of proper maintenance.

## Expected impact

At the end of the training, the electricians shall;

- Understand the billing structure and identify ways of saving cost.
- Be equipped with knowledge on tracking and analyzing energy consumption within the factory.
- Understand efficient operation of various electrical equipment in a factory.
- Ensure proper maintenance is carried out.
- Identify various energy saving opportunities in a factory and estimate energy and cost savings.
- Identify measures to take to stop energy wastage.

## Modules

- 1. <u>Power factor</u>
- 2. Maximum kVA demand
- 3. <u>Generator operation</u>
- 4. <u>Voltage balance</u>
- 5. Lighting
- 6. Motors and fans
- 7. <u>Energy monitoring & sub-metering</u>
- 8. Maintenance



## Sources of electrical energy

Most tea factories rely on

- Grid from Kenya power
- Hybrid (grid+hydro)
- Diesel generators as back up



- Oil generates just below coal.
- Most expensive to use
- Hydroelectric & wind emit the least

## Electricity consumption

| Energy   | Average Annual        |         | Average     |         |
|----------|-----------------------|---------|-------------|---------|
| Туре     | <b>Units Consumed</b> | Percent | Annual Cost | Percent |
|          | kWh                   | %       | kWh         | %       |
| Electric | 2,029,020             | 8       | 23,841,171  | 58      |
| Thermal  | 22,917,592            | 92      | 17,302,288  | 42      |
| Total    | 24,946,611            | 100%    | 41,143,459  | 100%    |



Electric energy accounts for less than <u>10%</u> total plant energy but accounts for <u>58%</u> of total plant energy cost

## Sectional consumption



### Components of previous utility bill-Cl1 at 415V

- Fixed charge at KSh 2500/period
- Energy Consumption kWh (TOU)
  - peak@ KSh 9.2/kWh
  - Off-peak @ KSh 4.6/kWh

Must be at 100% production e.g. high crop season. Extra production can be shifted to off-peak

- Maximum demand kW (Actual maximum consumed real power)
- Power Factor kW/kVA (Surcharge if below 0.9)
- Maximum demand kVA (maximum supplied power) at KSh 800/kVA
- Other levies (WARMA, ERC, REP, FCC, FA, IA) and VAT

# Components of current utility bill-Cl1 at 415V effective from 1<sup>st</sup> July 2018

- Fixed charge at KSh 0/period
- Energy Consumption kWh (TOU)
  - peak@ KSh 12/kWh
  - Off-peak @ KSh 6/kWh
- Maximum demand kW (Actual maximum consumed real power)
- Power Factor kW/kVA (Surcharge if below 0.9)
- Maximum demand kVA (maximum supplied power) at KSh 800/kVA
- Other levies (WARMA, ERC, REP, FCC, FA, IA) and VAT

## Other tariffs;

| Code | Customer<br>Type (Code Name) | Energy Limit<br>kWh/month | Charge<br>Method | Unit       | 2015/16 to<br>date<br>Approved | 2018/19<br>KPLC<br>Application | 2018/19<br>ERC<br>Approved |
|------|------------------------------|---------------------------|------------------|------------|--------------------------------|--------------------------------|----------------------------|
| DC   | Domestic                     |                           | Fixed            | KShs/month | 150                            | 200                            | 0                          |
|      | .ie :                        | 0-10                      | Energy           | KShs/ kWh  | 2.50                           | 13.01                          | 12.00                      |
| -    |                              | 11-50                     | Energy           | KShs/kWh   | 2.50                           | 13.01                          | 15.80                      |
|      |                              | 51-1500                   | Energy           | KShs/ kWh  | 12.75                          | 18.90                          | 15.80                      |
|      | 9                            | >1500                     | Energy           | KShs/ kWh  | 20.57                          | 25.56                          | 15.80                      |
| SC   | Small Commercial             | 0 - 15,000                | Fixed            | KShs/month | 150                            | 300                            | 0                          |
|      |                              |                           | Energy           | KShs/ kWh  | 13.50                          | 19.85                          | 15,60                      |
| CH   | Comm./industrial             | >15,000                   | Fixed            | KShs/month | 2,500                          | 3,100                          | 0                          |
|      |                              |                           | Energy           | KShs/ kWh  | 9.20                           | 13.77                          | 12.00                      |
|      |                              | -                         | Demand           | KShs/ kVA  | 800                            | 1,000                          | 800                        |
| CT2  | Comm./industrial             | No Limit                  | Fixed            | KShs/month | 4,500                          | 5,600                          | 0                          |
|      |                              |                           | Energy           | KShs/ kWh  | 8.00                           | 11.77                          | 10.90                      |
|      |                              |                           | Demand           | KShs/ kVA  | 520                            | 650                            | 520                        |
| CIS  | Comm./industrial             | No Limit                  | Fixed            | KShs/month | 5,500                          | 6,800                          | 0                          |
|      |                              |                           | Energy           | KShs/kWh   | 7.50                           | 10.93                          | 10.50                      |
|      |                              |                           | Demand           | KShs/ kVA  | 270                            | 350                            | 270                        |
| CIA  | Comm./industrial             | No Limit                  | Fixed            | KShs/month | 6,500                          | 8,000                          | 0                          |
|      |                              |                           | Energy           | KShs/ kWh  | 7.30                           | 10.63                          | 10.30                      |
|      |                              |                           | Demand           | KShs/ kVA  | 220                            | 280                            | 220                        |
| CIS  | Comm./industrial             | No Limit                  | Fixed            | KShs/month | 17,000                         | 21,000                         | 0                          |
| 1    |                              |                           | Energy           | KShs/ kWh  | 7.10                           | 10.32                          | 10.10                      |
|      |                              |                           | Demand           | KShs/kVA   | 220                            | 280                            | 220                        |
| SL   | Street Lighting              | No Limit                  | Fixed            | KShs/month | 200                            | 250                            | 0                          |
|      |                              |                           | Energy           | KShs/kWh   | 4.36                           | 15.91                          | 7.50                       |

### How can you reduce your electricity bill?

### Reduce consumption kWh

- Lower rated motor/appliance
- Reduce operation hours/idle operation

### Improve Power Factor

- Install PF correction/Daily check of PF control system
- Motor capacity vs duty
- Reduce kVA
  - Load scheduling
- Reduce losses
  - Voltage balancing
  - Motor loading

## Module 1: Maximum kVA demand

- Demand is the rate at which energy is delivered to an electrical load.
- It is expressed in either kW or kilovoltamperes (kVA).
- Maximum (peak) demand maximum rate at which electric energy is drawn through the meter during a period of time.

#### • For example:

For a house with, 4.5 kW water heater, 3.0 kW lighting, 15.0 kW cooking, 1 kW iron box and 1.3 kW microwave. If they all operate at the same time, the peak demand =24.8 kW.

- Electricity consumed after generation.
- Utilities must meet highest demand



### Demand charges

- Are utility's costs for meeting a customer's higher demand
- Based on the maximum kVA demand recorded in any half hour of billing period.
- Company "A" demand is 80 kW for 50 hours.  $Energy = 80 \times 50 = 4000 \, kWh$ .
- Company "B" demand is 20 kW for 200 hours.  $Energy = 20 \times 200 = 4000 \, kWh$ .
- Both use same amount of energy during the billing period.
- Should they pay the same?
- Required system capacity; 80 kW for Company A, 20 kW for B.

### Load shifting and scheduling

With TOU tariff, scheduling to process tea in cheaper off-peak periods (night) could save money.

| Day                           | Off-peak hours                    |
|-------------------------------|-----------------------------------|
| Weekdays                      | 22:00 to 00:00 and 00:00 to 06:00 |
| Saturdays and public holidays | 14:00 to 00:00 and 00:00 to 08:00 |
| Sundays                       | All day                           |

- Extra tea (above 100%) would require 2000 kWh to process.
- During peak, Energy cost  $9.45 \times 2000 = Kshs 18,900$
- Shifting to off-peak, Energy cost  $7 \times 2000 = Kshs \ 14,000$



## **Operational excellence**

#### Do's

- Operate withering when there is no processing
- Fully load processing lines
- Switch off unnecessary processing lines/loads
- Process extra crop during offpeak period if possible

#### Don'ts

- Run empty processing lines
- Minimize operating withering when processing is taking place



Peak demand reduced from 500 kVA to 400 kVA. Demand cost= Kshs800/kVA Cost savings= Kshs 80,000

### Module 2: Power factor



### How do I improve power factor

- Consumers of kVAR- transformers, induction motors, high intensity discharge (HID) lamps- lower PF.
- Generators of kVAR- capacitors, synchronous generators, synchronous motorsincrease PF
- To increase/improve PF:
- 1. Install capacitors (kVAR generators): Capacitors store KVARs and release it



(KVAR)

22

## Energy/cost saving from capacitors

|            |      | Jan-16       |      | Mar-16       |      | Apr-16       |      | May-16     |
|------------|------|--------------|------|--------------|------|--------------|------|------------|
|            | PF   | KSh          | PF   | KSh          | PF   | KSh          | PF   | KSh        |
| Factory 1  | 0.88 | 129,478.00   | 0.84 | 370,143.00   | 0.93 |              | 0.92 |            |
| Factory 2  | 0.85 | 412,547.00   | 0.85 | 302,163.00   | 0.84 | 347,020.00   | 0.88 |            |
| Factory 3  | 0.96 |              | 0.88 | 95,313.00    | 0.89 |              | 0.98 |            |
| Factory 4  | 0.87 |              | 0.93 |              | 0.82 | 714,807.00   | 0.82 | 620,460.09 |
| Factory 5  |      |              | 0.97 |              | 0.87 | 173,526.00   | 0.99 |            |
| Factory 6  |      |              | 0.99 |              | 1    |              | 0.85 | 349,757.16 |
| Factory 7  | 0.82 | 223,387.00   | 0.82 | 247,832.00   | 0.82 | 249,665.00   | 0.97 |            |
| Factory 8  | 0.96 |              | 0.89 | 39,524.00    | 0.94 |              | 0.99 |            |
| Factory 9  | 0.98 |              | 0.82 | 281,023.00   | 0.91 |              | 0.96 |            |
| Factory 10 | 0.78 | 681,879.00   | 0.9  |              | 0.97 |              | 0.95 |            |
| Total      |      | 1,447,291.00 |      | 1,335,998.00 |      | 1,485,018.00 |      | 970,217.25 |

Assuming Max 600kVA recorded, With **PF=0.78**,  $kW = 0.78 \times 600 = 468$  and  $kVAR = \sqrt{kVA^2 - kW^2} = \sqrt{600^2 - 468^2} = 375$ .

Correcting **PF to 0.99**,  $kVA = \frac{468}{0.99} = 473 \ kVA$  meaning  $kVAR = \sqrt{473^2 - 468^2} = 67$ .

Capacitors required to correct are  $375 - 67 = 308 \, kVAR$ .

PF 0.78, Assuming Max 600kVA recorded; Correct to PF 0.99, need additional 290kVAR; Investment cost: KSh 0.95m-1.2m; PB: 1.3-1.7yrs

## Effect of switching off capacitor bank

- If the capacitor bank is switched off during processing, PF goes back to 0.78
- Demand is raised from 473 kVA to 600 kVA
- Financial losses (kVA demand)  $(600 - 473) \times 800 = Kshs. 101,600$
- Additional losses due to PF surcharge

### Impact of overcorrecting PF



• When PF=1, kW=kVA

#### 2. Proper loading of motors



### Benefits of improving power factor?

#### 1. Lower cost of electricity by;

- a. Peak kVA billing demand- high PF  $\rightarrow$  low KVAR  $\rightarrow$  low KVA.
- **b.** Eliminating power factor penalty- Utility charges for low PF (<0.9).

#### 2. Increased system capacity

For example, a 1,000 KVA transformer with an 80% power factor provides 800 KW of power to the main bus. By increasing the power factor to 90%, the kW that can be supplied are:

$$0.9 = \frac{kW}{1000}$$
, Hence kW = 900 kW

3. Improved voltage level: As power factor increases, total line current reduces, meaning more efficient, cooler motor performance and longer motor life.

## **Operational excellence**

#### Do's

- Do not oversize capacitor banks
- Always switch on capacitor banks when required
- Properly load motors and conveyors (at least 50%)

#### Don'ts

- Don't run idle or empty conveyors
- Do not overload motors

### Module 3: Generator

#### **Cost considerations**

- Cost of diesel
- Energy content of a liter of diesel: 32 MJ/l
- Energy conversion: 1 kWh=3.6 MJ
- Generator electricity generation efficiency: 30%

$$efficiency, \eta_g = \frac{output}{input}$$

• 1kWh of electricity requires how many kWh diesel?

*input* 
$$(kWh) = \frac{output (kWh)}{n_g} = \frac{1}{0.3} = 3.33 \ kWh$$

• How many MJ of diesel are these;

$$3.33 \, kWh \times \frac{3.6 \, MJ}{kWh} = 12 \, MJ$$

- 1 liter of diesel has 32 MJ energy content and costs Kshs. 96.
- Cost of generating 1 kWh electricity is;

$$\frac{12 MJ}{32 MJ} \times Kshs.96 = Kshs.36/kWh$$



### Specific Fuel Consumption (SFC)

• Quantity of diesel required to generate one unit of electricity.

 $SFC = \frac{Fuel \ consumtion \ per \ unit \ time}{power \ produced}$ 

- Lower SFC  $\rightarrow$  higher efficiency
- Optimum SFC at 75-80% loading
- e.g. a 500 kVA set is observed to have 20% better SFC at 75% than at 25% loading



### Generator efficiency

- Do not use a big generator to run small loads!!
- Factory can have 3 generators
  - Biggest generator- to use when at full load.
  - Medium generator- to use when at half load
  - Small generator- use when factory is not processing.



This saves on diesel cost and reduces CO<sub>2</sub> emissions



Use when

processing

### Generator maintenance

-----

## **Operational excellence**

#### Do's

- Where possible use the right generator for the load
- Regularly maintain generators per manufacturer's recommendations

#### Don'ts

• Don't use a very big generator for very small loads

## Module 4: Motors & fans



- All induction motors have losses; constant (fixed) & variable losses.
- Full load motor efficiency varies from about 85% to 97%, due to losses;



### Motor efficiency



## Motor retrofitting/replacing

|                            | <b>22 kW</b>                            | 22 kW                                   |
|----------------------------|-----------------------------------------|-----------------------------------------|
| Efficiency                 | 93%                                     | 86%                                     |
| Process Hours              | 4200                                    | 4200                                    |
| Load (70%)                 | 15.4                                    | 15.4                                    |
| Elec. Energy<br>(kWh)      | $\frac{15.4}{0.93} \times 4200$ =69,548 | $\frac{15.4}{0.86} \times 4200$ =75,209 |
| Energy Cost<br>[KSh20/kWh] | KSh 1,390,960                           | KSh 1,504,180                           |

#### For retrofitting:

- Energy Efficient Motor : KSh 200,000
- Savings: KSh 113,220 per year
- Pay Back: 1.76 years

#### *In case of replace:*

- EE Motor Extra Cost over Std Motor Cost: KSh 50,000
- Savings: KSh 113,220 per year
- Pay Back: 5.3 months

### Motor rewinding

- Will repaired motor retain its efficiency?
- Repair decision making process involves;
  - Suitability for application (sizing, enclosure)
  - Condition of stator and rotor
  - Assess all damages: cost of repair vs replacement
  - Efficiency; lifecycle costing
  - Availability of funds & replacement motor
  - ROI for replacement acceptable when replacing with energy efficient motor?

## Good rewinding practice

- To maintain or reduce winding copper (i<sup>2</sup>R) losses;
  - Ensure overall length of turns in windings does not increase (more resistance increases losses)
  - Increase wire area if slot fit allows it (larger area reduces resistance, reducing losses)
- Maintain efficiency by
  - Copy-rewinding or improving winding pattern
  - Use same or shorter average length of turns
  - Using same parts as before e.g. bearings, fans etc.
- Why could efficiency drop?
  - Damage to the stator while removing damaged windings.
  - Reassembly can cause more acute problems

### Methods of starting motors/fans

- Direct-on-line starting (D.O.L)- high starting current that may cause interference with supplies to other consumers.
  - Low power and torque.
  - Suitable for small fans (38 inches)
- Star-delta starting- stator phase winding are star-connected.
  - High energy consumption
  - Higher torque
  - Suitable for larger fans e.g. 48 inches.
- Auto transformer starting- auto transformer reduces stator starting current- torque seriously reduced.
  - When motor is up to speed, switch is moved to direct connection.

### Fans: Dampers vs Variable frequency drives (VFDs)

- Dampers used to control volumetric air flow.
  - They are like pressing car's throttle (accelerator) and brakes together!!
  - Cheap to buy & install
  - Energy inefficient
  - Require frequent maintenance
- VSDs/VFDs
  - operate like a car's throttle.
  - Adjusts speed of motor based on demand.
  - Most energy efficient
  - More expensive to buy
  - Pay back within the lifetime.
  - Harmonic concerns





## **Operational excellence**

#### Do's

- Consider high efficiency motors while replacing std motors
- Follow due diligence while rewinding motors.
- Use suitable connection for motors and fans based on torque required.
- Consider VFDs in place of dampers

#### Don'ts

- Do not connect VFDs and then fix the speed.
- Do not use VFDs and dampers together.

## Module 5: Voltage balance



- Line voltage- between phases.
  - Phase voltage- between phase and neutral.

- Ideally:
  - Load in each phase should be the same
  - No net current flows thro neutral
- Not possible to achieve ideal situation

### Causes of imbalance

- Unequal reactance in induction motors →varying current in three phases.
- Connecting single phase loads to only one phase.
- Unequal impedances in power transmission or distribution system.

### **Control Measures**

- Distribute single phase loads equally among the three phases
- Replace or rewind motors with unbalanced three phase reactance

## Quantifying the losses

|         | Parellines & See No No | Halfzelan) the Salike, (10-)1 | UMBE DRUCK! |            |            |
|---------|------------------------|-------------------------------|-------------|------------|------------|
| 1 X     | Recorder Functions     | ools                          |             |            | >          |
| Paste 💉 | Power Paramet          | ()rs                          |             |            |            |
| -       | -                      | Phase A                       | Phase B     | Phase C    |            |
|         | Line Voltage           | 419.3 V                       | 422.7 V     | 420.4 V    |            |
|         | Phase Voltage          | 240.7 V                       | 243.5 V     | 244.7 V    |            |
| -       | I (A)                  | 78.20 A                       | 83.90 A     | 89.20 A    | Total      |
|         | P (kW)                 | 16.58 kW                      | 16.84 kW    | 18.90 kW   | 52.31 kW   |
|         | Q(kVAr)                | 8.580 kVAr                    | 11.28 kVAr  | 10.28 kVAr | 30.14 kVAr |
|         | S (kVA)                | 18.66 kVA                     | 20.27 kVA   | 21.51 kVA  | 60.37 kVA  |
|         | PF                     | 0.888                         | 0.831       | 0.878      | 0.866      |
| 4       |                        |                               |             | Frequency  | 50.36 Hz   |
| -       |                        |                               |             |            | -          |
|         |                        |                               | Save Snapsh | ot         |            |
|         | >0                     |                               |             |            |            |
| -       | 1                      |                               |             |            |            |

% *imbalance* =  $\frac{max. \ voltage \ deviation}{average \ voltage} \times 100$ 

Example: average voltage = 420.8V. % *imbalance* =  $\frac{422.7 - 420.8}{420.8} \times 100$ = 0.45%

- Up to 2% imbalance is acceptable.
- Operation of a motor with above a 5% imbalance condition can damage to the motor.



• Increased temperature  $\rightarrow$  heat losses ( $i^2 R$ ).

#### • Maintenance issues:

- Temperature rise: decomposes grease in bearings & de-rates motor winding
- Fluctuating torque & speed vibrations & noise damages the motor
- De-rating of power cables- Imbalances cause higher current  $\rightarrow$  heat losses ( $i^2 R$ ).
- More power loss higher  $\rightarrow$  more power bills.

## **Operational excellence**

#### Do's

- Try to equally distribute single phase loads.
- Frequently monitor motors that could cause imbalances.
- Replace/rewind such motors.



## Module 6: Lighting

Common sources of light

- Incandescent- has a wire element. 90% heat and 10% light (100W bulb produces 90W heat and 10W light)
- Fluorescent linear, U-tubes, CFLs.
   40% light and 60% heat
- LED Light emitting diodes
- Natural (sunlight)





Skylight and LED at a tea factory

|                                                    | LEDs    | CFLs    | Incandescent |  |  |
|----------------------------------------------------|---------|---------|--------------|--|--|
| Lifespan (hours)                                   | 50,000  | 10,000  | 1,200        |  |  |
| Power (equiv. 60 watts)                            | 6       | 15      | 60           |  |  |
| Energy used over 50,000<br>hours (kWh)             | 300     | 750     | 3,000        |  |  |
| Electricity cost<br>(@Kes20/kWh)                   | 6,000   | 15,000  | 60,000       |  |  |
| Bulbs needed for 50,000 hours of use               | 1       | 5       | 42           |  |  |
| Cost per bulb (Kes)                                | 500     | 250     | 50           |  |  |
| Cost of bulbs (Kes)                                | 500     | 1,250   | 2,100        |  |  |
| Cost of bulbs + energy<br>after 50,000 hours (Kes) | 6,500   | 16,250  | 62,100       |  |  |
| For a house with 5 bulbs only, in 50,000 hours     |         |         |              |  |  |
| Energy (kWh)                                       | 1,500   | 3,750   | 15,000       |  |  |
| Cost (Kes)                                         | 32,500  | 81,250  | 310,500      |  |  |
| Energy savings (kWh)                               | 13,500  | 11,250  | 0            |  |  |
| Cost savings (Kes)                                 | 278,000 | 229,250 | 0            |  |  |

### Comparing the features of common bulbs

|                                              | LEDs            | Fluorescent         | Incandescent      |
|----------------------------------------------|-----------------|---------------------|-------------------|
| Frequent On/Off Cycling                      | no effect       | shortens lifespan   | some effect       |
| Turns on instantly                           | Yes             | Slight delay        | yes               |
| Durability                                   | Durable         | Fragile             | Fragile           |
| Heat Emitted                                 | Low (3.16 kJ/h) | Medium (15.83 kJ/h) | High (89.68 kJ/h) |
| Hazardous Materials                          | None            | 5 mg mercury/bulb   | none              |
| Replacement frequency<br>(over 50,000 hours) | 1               | 5                   | 40+               |

Evident that LEDs have the best qualities.

### Retrofitting fluorescent lamps

|                   | Fluorescent                   | LED                          |
|-------------------|-------------------------------|------------------------------|
| Power (W)         | 58                            | 18                           |
| Hours (in a year) | 3,600                         | 3,600                        |
| Energy (kWh/year) | $58 \times 3600 / 1000 = 209$ | $18 \times 3600 / 1000 = 65$ |
| Cost (Kshs/year)  | $209 \times 20 = 4,180$       | $65 \times 20 = 1,300$       |

- Energy Efficient Lamp (LED) : KShs 3000
- Assume 200 lamps replacement: KShs 600,000
- Savings: (4,180 1,300) × 200 = KShs 576,000/year

• Pay Back: 
$$\frac{600,000}{576,000} \cong 1 \text{ year}$$

### Retrofitting security lights

|                   | Metal Halide                     | LED                          |
|-------------------|----------------------------------|------------------------------|
| Power (W)         | 250                              | 100                          |
| Hours (in a year) | 4,380                            | 4,380                        |
| Energy (kWh/year) | $250 \times 4380 / 1000 = 1,095$ | $100 \times 4380/1000 = 438$ |
| Cost (Kshs/year)  | $1,095 \times 20 = 21,900$       | $438 \times 20 = 8,760$      |

- Replacing 10 Halogen lamps with LED Equivalent
- Cost of LED lights @2,500= KSh 250,000
- Energy Cost Savings:  $(21,900 8,760) \times 10 = KSh 131,400/year$

• Pay Back: 
$$\frac{250,000}{131,400} = 1.9 \ years$$

### Proper lights operation

#### DO YOU KNOW THAT.....

To set up a power plant it takes......5 years To set up a transmission line, it takes .......1 year To plan energy conservation it takes......1 month To promote energy conservation it takes....1 hour



#### Se<u>nsitize</u>





- Security lights should have photocells- night
- Photocells+motion sensors – night & motion

Consider solar security



#### Where possible, use natural light



## **Operational excellence**

#### Do's

- Pay attention to sensitizing materials on lights operation
- Occasionally clean the skylights.
- Automate lights operation where possible.

#### Don'ts

• Don't leave lights switched on unnecessarily.



- Install sub-meters in various sections of the factory.
- Periodically measure & record individual motors/fans
- Compare similar processes

### Why sub-meter?

- Verify utility bills
- Allocate energy costs and assign accountability
- Determine equipment/system efficiency
- Identify process problems
- Identifying future energy savings opportunities
- Compare similar processes

### Potential energy savings from sub-meters

- Increased awareness- Employees notice energy waste e.g. lights left on when they know it is being metered.
- Savings from increased accountability- Measuring energy costs can show that decisions made by production staff & energy managers play a significant role in the overall cost of energy.
- Savings from automation- e.g. during peak electrical demand, non critical load could be shut down.

Instrumentation

• In case there are no sub-meters, use portable meters such as power meters to record and monitor energy consumption.

### What must you do?

By themselves, meters do not save money -- they only cost money to purchase and install. To maximize savings, complement a sub metering system with appropriate procedures.

• Keep records

Develop & maintaining a database.

• Analyze the data

Trends, peaks, and correlation with factors such as weather, season, operating shift, and production rate.

Make sense of the data

• Take action

For continuous improvement & preventive maintenance Actions could save the factory downtime, labour and money.

## **Operational excellence**

#### Do's

- Take energy consumption readings occasionally for various loads.
- Record and compare the consumption.
- Analyze the data
- Take appropriate actions.

#### Don'ts

• Don't record data just because you are asked to!

## Module 8: Maintenance



### Maintenance

- Power house should be kept clean
  - Close the door so as to only allow authorized personnel.
  - Ensure no water on the floor.
  - Should be well ventilated.
- Ensure all indicating devices are fully functional and properly set.





Examine insulation

#### NO Shortcuts!! Follow the procedure

