

Mini-Grid Planning: Integrated Energy Planning for Rural Electrification

HPNET Webinar

Dr. Catherina Cader

Reiner Lemoine Institut

10. December 2019

Reiner Lemoine Institut (RLI)

- ► Non-profit research institute
- ▶ 100 % subsidiary of Reiner Lemoine-Foundation (RLS)
- ► Established 2010 in Berlin
- ► Managing Director: Dr. Kathrin Goldammer
- ► Approx. 70 researchers and students
- ► Member of e.g.: ARE, Eurosolar, SDSN, dena

Fields of Research

Transformation of Energy Systems

We analyze and optimize future scenarios with an energy supply largely based on renewable energy sources.

- Scientific monitoring of the energy transition – on national, regional and EU-Scale
- Simulation and optimization of cross-sectoral energy systems
- ► Analysis of single technology performances in integrated energy systems (energy storage, PtG, PtH, cogeneration)
- ► Research on transitional energy processes

Mobility with Renewable Energy

We analyze sustainable mobility concepts through sophisticated implementation and optimization of renewable energy systems.

- ► Battery electric mobility: propulsion of vehicles using electric energy from RE
- ► Hydrogen-electric mobility: production of hydrogen via electrolysis and Renewable Energies
- ▶ Integration of battery-electric and hydrogen-electric mobility: evaluation of mobility needs, analysing of public transportation, car-fleets of municipalities and cooperate firms, planning of charging infrastructure, multi-use of vehicles like car-sharing

Off-Grid Systems

We support the development of sustainable energy supply for remote regions.

- Strategies for rural electrification
- Simulation and optimization of hybrid mini-grids
- Combining GIS-analyses and energy system simulations
- Market potential analyses and business implementation strategies

Off-Grid Systems at RLI – Mission and Motivation

Mission

We support the development of sustainable energy supply for remote regions (SDG7)

Motivation

Economic:

Decentralized energy supply systems represent an attractive market for renewable energy and battery storage

Ecological

Fossil fuel substitution by renewable energy reduces harmful emissions locally and globally in off-grid systems

Social:

Electricity is a prerequisite for improved local development, health care and education.

Goal 7:

Ensure access to affordable, reliable, sustainable and modern energy for all.

Decentral supply systems

(energy system modelling)

Rural electrification planning

(GIS and demand modelling)

Climate resilience and transformation

(socio-economic research)

- Simulation of energy systems
- Feasibility studies and business model analyses
- Operation strategies and power flows
- Levelized Cost of Energy (LCOE) calculations

Decentral supply systems

(energy system modelling)

Rural electrification planning

(GIS and demand modelling)

Climate resilience and transformation

(socio-economic research)

- Renewable resource assessment
- Power supply infrastructure analyses
- Application of database systems
- On-/off-grid electrification modeling
- Energy access baseline
- Ability to pay and energy demand
- Digital survey implementation

Decentral supply systems

(energy system modelling)

Rural electrification planning

(GIS and demand modelling)

Climate resilience and transformation

(socio-economic research)

- Transformation of energy and transport sectors
- Climate change resilience of energy systems
- Off-grid market potential analysis and climate relevance
- Evaluation of political and social factors

Decentral supply systems

(energy system modelling)

Rural electrification planning

(GIS and demand modelling)

Climate resilience and transformation

(socio-economic research)

Guiding (research) questions for RLI's OG Team & Electrification planning

- Where do people without access to electricity live?
- What is the energy access of those people?
- What is the electricity demand of those people?
- What are the least-cost supply options for delivering this demand?
- ► What is the optimized phase wise electrification plan to implement those options?
- What role play off-grid / island systems?

Definition of the "ideal" project

What defines a perfect project (location)?

- Brownfield vs greenfield
- Customer type (e. g. IPP, utility, ...)
- Size [MW]
- Project volume [USD]
- Duration of project [years]
- Value chain steps

. . .

Definition of the "ideal" market

What makes a perfect market?

- Size [# of pot. projects] per region
- Exclusion criteria (civil disorder / language,...)
- Sales network
- Accessibility
- Replicability

• • •

Value chain in the off-grid market

Electrification Planning

Process: GIS-based off-grid assessment

Data collection

Data processing and analysis

Prioritization of off-grid market and visualization

Location-specific site identification and characterization

- Geospatial analysis enables a rapid analysis of the potential sites for hybrid and renewable supply using readily available data.
- Village clusters were identified based on available satellite imagery based population datasets.
- ► These can then be characterised using available datasets such as electricity transmission grids, local infrastructure and others.

Prioritization of electrification options

► A range of criteria are then weighted and used to identify which of these sites may be specifically interesting for hybrid and renewable energy supply.

- Common examples include:
- Distance to grid
- Population
- Population density
- Proximity of health clinics
- Proximity of schools
- Mobile phone coverage

Modelling electricity demands

- Household electricity demands are heterogenous across cultures and climates
- Surveys and secondary datasets help gain an understanding of the local context
- Stochastic modelling is a step towards better representation of uncertainties

Pelz, S, (Forthcoming) Understanding the energy demands of households in rural Nepal

Market Evaluation & Portfolio Development

An example from Tanzania: https://tzmapping.github.io/

Challenge: Old satellite imagery / fast development

Challenge: Old satellite imagery / fast development

Challenge: Local variation

- ► Various settlement structures
 - Varying settlement density and shape
 - ▶ Settlements along roads

Challenge: Local variation

- ► Various settlement structures
 - ▶ Different house materials
 - ▶ Nearby residential areas detected in separate clusters

Thank you very much.

Your ideas?

... Partnerships

... Research cooperation

... Joint project proposals

Dr. Catherina Cader

Tel: +49 (0)30 1208 434 45

E-Mail: catherina.cader@rl-institut.de

Web: http://www.rl-institut.de

Twitter: @RL_Institut @_catcad