

PV-HYDRO WITH SMART HYDRO POWER + STUDER INNOTEC

Serge Remy, Studer Innotec Head Sales & Marketing

STUDER INNOTEC

- > Swiss manufacturer of power electronics
- ➤ 30 years of experience and expertise in off-grid electrification
- ➢ leading the market with a range of more than 60 standard models

INVERTERS, SERIES AJ

Brings simple solutions for small off-grid electrification

- ➤ More than 100'000 units in the field today
- > Easy implementation
 - Mature technology
 - Cost effective
 - > **B.L.O.**

INVERTER/CHARGERS, SERIES XTENDER

- Serving any kind of topology
- > from 1kW hybrid solar system
- > up to 72kW distributed mini-grid

AC

MPPT SOLAR CHARGE CONTROLLERS, VARIOTRACK AND VARIOSTRING

- > Best in class MPPT solar regulators
- **→** Up to 15 units in parallel
- **→** 4 STEP charger
- > Fast and MPPT (>99%)
- **➢** Best efficiency (> 98%)
- ><1W in night mode

IT'S ALL ABOUT COMMUNICATION!

COMMUNICATION IS ALL ABOUT IT!

Marisol – a reference village in Peru

- 45 households
- **Cocoa plantation**
- A school and a basic workshop mainly for carpentry
- **Electricity from diesel** for 4-6 hours per day

The Hybrid System designed for this profile

- Rio Huayabamba: 1.2m/s -2.2 m/s
- 4 kW SMART Hybrid System: hydrokinetic turbine (5kW)+ photovoltaic panels (1,5 kWp) + 5kW gen-set and + 16kWh battery bank...

Figure 5: Monthly distribution of power production across the 3 sources: green = SMART turbine, yellow = solar PV, black = diesel generator

Marisol – with the SMART Hybrid System

- Sustainable energy
- year round electricity
- available for productive use
- internet café

Soon:

- Water treatment
- for 24 hours (TTA meters)

SMART Electrical management system

Load

with the balance of power

SMART Monofloat, Duofloat, or Freestream turbines from Smart Hydro Power. Produces a varying AC voltage and up to 5 kW of power.

Dumpload - Dissipates the power as heat.

PV Array – Photovoltaic array. Generates a varying DC output. Complements the power generated by the hydro turbine.

Batteries - Typically a 48 V bank of deep-cycle lead-acid type batteries or similar technology.

Backup generator -Automatically started by the offgrid inverter when the system does not produce enough power. Generates a pure 230 VAC output.

Hydrokinetic Scaled Average V (kWh/m²/day) Solar Scaled Average V (kWh/m²/day) Initial Capitz V (kW) SMART V (kW) Converter V (kW) Dispatch V (kW) COE V (€) NPC V (€) Operating Cos V (€) Initial Capitz V (€) 0,70 5,26 Image: Specific Scaled Average V (kW) Initial Capitz V (kW) Initial Capitz V (E) Initi	System		Cost						itecture	Arch								itivity	Sensi
0,70 5,26	tz V Ren Frac (%)	Initial Capita ▼	Operating Cos ▼	NPC ▼	COE ▼	Dispatch 🎖	Converter V	SMART 🔻	Bat 🗸	Gen ▼	PV kW) ▼	Z	(3)	80	£	*	A	Scaled Average 🔻	Scaled Average 🔻
	54,4	37.200 €	2.879 €	80.381 €	0,52 €	CC	4		16	5	,0			=	A.	, in		5,26	0,70
1,77 5,26																			

This system guarantees the cost kWh below 30€cent/kWh, for the initial capital cost lower than for only PV.

SMART Solutions for rural electrification

SHP develops and commercializes environmentally friendly kinetic micro hydropower systems as the backbone for our rural electrification solutions.

SMART MONOFLOAT TURBINE

Up to 5kW submerged river turbine for locations with high incidence of debris

SMART HYBRID SYSTEM

Photovoltaic panel combined with the river turbine, complement each other for the productive use of energy

SMART FREE STREAM

5kW river/canal turbine fixed to the river bottom – requires only 1,1 m depth

CUSTOMIZED SMART SERVICES

Local partners, Electric Management System and trainings

SMART Installations

SMART Free Stream - Germany

SMART Hybrid System - Peru

SMART Hybrid System - Colombia

SMART Monofloat - Nigeria

