CERTIFICATES

SOLAR MODULES

Certificate

Registration No.: PV 60025844

Page 1

Report No.: 15031989.001

License Holder: Novergy Energy Solutions Pvt, Ltd. I Navlok Navratna Complex Bedla Road Udaipur-313001 India

Manufacturing plant: Novergy Energy Solutions Pvt, Ltd. I Navlok Navratna Complex Bedla Road Udaipur-313001 India Product: PV Module Type: MCA205

MCA205, MCA210, MCA215, MCA220, MCA225, MCA230, MCA235, MCA240, MCA245, MCA250. MCA160, MCA165, MCA170, MCA175, MCA180, MCA185, MCA190.

Basis:

IEC 61730-1:2004 IEC 61730-2:2004 EN 61730-1:2007 EN 61730-2:2007 "Photovoltaic (PV) module safety gualification"

Factory Inspection

To document the consistent quality of the product factory inspections are performed periodically.

- Qualified, IEC 61215
- Safety tested, IEC 61730
- Periodic Inspection

Remarks:

- IEC EN 61730 consists of part 1 (Requirements for construction) and part 2 (Requirements for testing).
- The above listed PV modules fulfil the requirements of Application Class A (Safety Class II). They may be used in PV plants at a maximum system voltage (Voc at STC) of up to 1000 VDC.
- The fire test (IEC 61730-2 / MST 23) was not performed.

Conditions:

The product test is voluntarily according to technical regulations. Any change of the design, materials, components or processing may require the repetition of some of the qualification tests in order to retain type approval. The certificate is valid until 23 May 2014.

Cologne, 2 July 2009

TÜV Rheinland Product Safety GmbH, Am Grauen Stein, D-51105 Cologne

BATTERIES

Letter of Attestation

205867-1446744

CSA International has completed an evaluation on TGE 420 Batteries for Cyclic Endurance test as per CL15 of IEC 61427 comprising of shallow cycling at low state of charge and high state of charge at 40 Deg C for 14 units each comprising of 150 cycles

Manufactured by:

HBL NIFE Power Systems Ltd. 8-2-601, Road No. 10, Banjara Hills Hyderabad – 500 034, India

Based on the evaluation CSA hereby attests that the above subject model complies with the following standards/requirements, to the extent applicable

IEC 61427 : 1999 Clause 15

کې کې

•••

- 3

.

.

Secondary cells and batteries for solar photovoltaic energy systems – General requirements and methods of test

Issued by: Brij Aggarwal, P. Eng.

Date Issued: March 28, 2005

Signature:

This Letter of Attestation is not an authorization to use any of CSA's registered Marks. The results obtained are contingent upon the characteristics of the actual samples used in the evaluation. In the absence of a continuing Inspection Service, CSA International provides no assurance, expressed or implied, that the results are applicable to reproductions of these samples. This letter can only be reproduced as a complete entity and abstracts and abbreviations are not permitted.

Certificate of Compliance

Certificate: 1391882

Project: 1391882

Master Contract: 205867

Date Issued: October 28, 2003

Issued to: HBL NIFE Power Systems Ltd. 8-2-601 Road No 10 Banjara Hills Hyderabad, 560034 INDIA

The products listed below are eligible to bear the CSA Mark shown

IEC/EN 60896-2

Issued by:

ggarwall P. Eng Brij P.

Authorized by: Terry Nagy Operations N

Operations Manager

PRODUCTS

CLASS 9091 01 - MISCELLANEOUS.

PART A: TGE Series (OPzV type)

Tubular VRLA (Gelled electrolyte) batteries, TGE series, Models 4 OPzV 200 (TGE 200) to 12 OPzV 1200 (TGE 1200), rating 200 Ah to 1200 Ah (single cells); 200 Ah to 3000 Ah (multiple single cells connected in parallel), at 10 hr discharge rate to end voltage of 1.80 V at 20°C, nominal voltage 2V per cell; 2.27± 0.02 V float operation at 20°C.

 Certificate:
 1391882

 Project:
 1391882

Master Contract: 205867 Date: October 28, 2003

Page 2

The details for the range covered are as follows:

Cell type	Model	Nominal Capacity (Amp-hr)
4 OPz V 200	TGE 200	200
5 OPz V 250	TGE 250	250
6 OPz V 300	TGE 300	300
5 OPz V 350	TGE 350	350
6 OPz V 420	TGE 420	420
7 OPz V 490	TGE 490	490
6 OPz V 600	TGE 600	600
8 OPz V 800	TGE 800	800
10 OPz V 1000	TGE 1000	1000
12 OPz V 1200	TGE 1200	1200

PART B: TGI Series

Tubular VRLA (Gelled electrolyte) batteries, TGI Series, Models TGI 80 to TGI 500, rating 80 Ah to 500 Ah (single cells); 80 Ah to 3000 Ah (multiple single cells connected in parallel), 10 hr discharge rate to end voltage of 1.80 V at 20°C, nominal voltage 2 V per cell; 2.27 ± 0.02 V float operation at 20°C.

The details for the range covered are as follows:

Model	Nominal Capacity (Amp-hr)
TGI 80	80
TGI 120	120
TGI 200	200
TGI 250	250
TGI 300	300
TGI 350	350
TGI 400	400
TGI 500	500

* Nominal capacity is at 10 hr rate of discharge to an End Cell Voltage of 1.80 V at 20°C.

APPLICABLE REQUIREMENTS

IEC 60896-2:1995 - Stationary lead-acid batteries - General requirements and methods of test Part 2: Valve regulated types.

EN 60896-2:1996 - Stationary lead-acid batteries - General requirements and methods of test Part 2: Valve regulated types.

Ę

Supplement to Certificate of Compliance

Certificate: 1391882

Master Contract: 205867

The products listed, including the latest revision described below, are eligible to be marked in accordance with the referenced Certificate.

Product Certification History

	Project	Date	Description	
	1391882	2003/10/28	Original Certification.	
	·			
		r-		
		 	- -	
)				
			and the second sec	

नी एग आई आर कॉमपनकर वेन्ने - 600 113 इंडिया नूरपाग 2254 2068, 2254 2818 ो तार कॉनसर्च ेक्स 044-22542456/22541973/22541508

CSIR Complex, Chennai - 600-113, INDIA Phone : 2254 2068, 2254 2818 Grams : CONSEARCH . Fax : 044-22542456722541973722541508 E.mail : bnl@vsnl.com

केन्द्रीय विधुतरसायन अनुसंधान संस्थान - मदास यूनिट

CENTRAL ELECTROCHEMICAL RESEARCH INSTITUTE - MADRAS UNIT

: Nil

TEST REPORT

Page <u>1 of 12</u>

No: EC/M/B/TR-15/HBL12V80GVRLAB/2004

DATE: 06-12-2004

1. Name and address of the firm whose Product is evaluated.

M/s. HBL NIFE POWER SYSTEMS LTD., <u>Regd. Office</u>: 8-2-601, Road No.10, Banjara Hills, Hyderabad - 500 034.

(1) TSW/CECRI/03/2003-04 dt:29.12.2003

12V 80Ah Tubular Gel Valve Regulated Lead Acid

"HBL NIFE 12V - 80Ah @ 10Hr. Model 12TGI 80 Tubular Gel Valve Regulated Lead Acid Secondary

(2) HNPS/18.0/CBO dt. 19.06.2004

Batteries assembled in plastic containers

Secondary Batteries

Three numbers

2. Sponsoring Authority

3. Letter references

9

-9

3

-9

()

(1

4. Nature of product

5. Description with trade mark

6. Total numbers submitted for evaluation with serial numbers

7. Test procedure

 Capacity tests @ C₁₀, C₅, C₂₀, C₄₈, C₇₂, C₁₂₀, & C₂₄₀ and Charge Efficiency tests @ 90%, 75%, & 40% State of Charge as per Specification No. IEC 61427

Total Pages: Twelve

inical Officer (Testing)

C/1-07-136

Scientist-in-Charge

CECRI Madras Unit

 P_{L}

आई आर कॉमप्लेकस, चेन्ने - 600 113 इंडिया 2254 2068, 2254 2818 कॉनसर्च

044-22542456/22541973/22541508

CSIR Complex, Chennal - 600 113. INDIA Phone 2254 2068, 2254 2818 Grams. CONSEARCH Fax : 044-22542456/22541973/22541508 E.mail : bnl@vsnl.com

वेन्न्द्रीय विधुतरसायन अनुसंधान संस्थान - मदास यूनिट CENTRAL ELECTROCHEMICAL RESEARCH INSTITUTE - MADRAS UNIT

TEST REPORT

Page <u>2 of 12</u>

No: EC/M/B/TR-15/HBL12V80GVRLAB/2004

DATE: 06-12-2004

Issued to	: M/s. HBL NIFE POWER SYSTEMS LTD.,
Sponsoring Authority	Regd. Office: 8-2-601, Road No.10, Banjara Hills, Hyderabad - 500 034. : Nil
Product Tested	: 12V 80Ah Tubular Gel Valve Regulated Lead Acid Secondary Batteries

RESULTS:

9

-3

5

1

X

1

1

3

1

(a) Construction:

The batteries are assembled in plastic containers and sealed with plastic lids The battery lid has six vent holes fitted with valves. The positive and negative terminals are clearly identifiable.

(b) Markings:

TUBULAR GEL VRLA 12V - 80Ah @ 10 Hr. MODEL

: 12 TGI 80

Constant Voltage Charging :

Float Charging Voltage	: 13.8V @ 27 ⁰ C
Boost Charging Voltage	: 14.1V @ 27 ⁰ C
Aaximum Current Limit	: 0.2C ₁₀

HBL NIFE HBL NIFE Power Systems Limited

(c) Dimensions:

Over all dimensions	Observed (mm)
Length	525
Width	220
Height	230

M.V. Honoria

In-Charge

Officer (Testing)

\$30.005. faminadu, India Karaikudi

Scientist-in-Charge

CECRI Madras Unit

044-22542456/22541973/22541508

CSIR Complex, Chennal - 600 113, INDIA Phone : 2254 2068, 2254 2818 Grams : CONSEARCH Fax : 044- 22542456 / 2254 1973 / 2254 1508

E.mail : bnl@vsnl.com

वेन्न्द्रीय विधुतरसायन अनुसंधान संस्थान - मदास यूनिट CENTRAL ELECTROCHEMICAL RESEARCH INSTITUTE - MADRAS UNIT

TEST REPORT

Page <u>3 of 12</u>

No: EC/M/B/TR-15/HBL12V80GVRLAB/2004

DATE: 06-12-2004

 Issued to
 : M/s. HBL NIFE POWER SYSTEMS LTD., Regd. Office: 8-2-601, Road No.10, Banjara Hills, Hyderabad - 500 034.

 Sponsoring Authority
 : Nil

 Product Tested
 : 12V 80Ah Tubular Gel Valve Regulated Lead Acid Secondary Batteries

<u>RESULTS</u>:

Rated Capacity (Ah)80Ah at C10 rate discharge @ 20°CRequirementCapacity should not be less than 80Ah at C10 rate @
20°C to an end voltage of 10.8 VBattery No.12Observed Capacity (Ah)90.786.188.3

(d) Test for Capacity @ C₁₀ Rate :

V.Ven Technical Office (Testing)

M.V.A. In-Charge (Testing)

Scientis in-Charge CECRI Madras Unit

ी.एस आई आए. कॉमप्लेकस, वेन्से - 600 113 इंडिया 2254 2068, 2254 2818 בוורק कॉनसर्च न तार

क्स

•3

CSIR Complex, Chennal - 600 113. INDIA Phone 2254 2068, 2254 2818

- Grams : CONSEARCH
- Fax

044-22542456/22541973/22541508 E.mail bnl@vsnl.com

044-22542456/22541973/22541508

वेन्द्रीय विधुतरसायन अनुसंधान संस्थान - मदास यूनिटं CENTRAL ELECTROCHEMICAL RESEARCH INSTITUTE - MADRAS UNIT

TEST REPORT

Page <u>4 of 12</u>

No: EC/M/B/TR-15/HBL12V80GVRLAB/2004

DATE: 06-12-2004

Issued to : M/s. HBL NIFE POWER SYSTEMS LTD., Regd. Office: 8-2-601, Road No.10, Banjara Hills, Hyderabad - 500 034. Sponsoring Authority : Nil

Product Tested

: 12V 80Ah Tubular Gel Valve Regulated Lead Acid Secondary Batteries

RESULTS:

(e) Test for Capacity @ C5 Rate :

Rated Capacity (Ah)	83.3% of C ₁₀ (i.e. 66.6Ab) at C ₅ rate discharge @ 20° C		
Requirement	Capacity should not be less than 66.6Ah at C ₅ rate (discharge current 13.35A) @ 20° C to an end voltage of 10.5 V		
Battery No.	• 1		
Observed Capacity (Ah)	79.3		

Technical Officer (Testing)

M.V.In

Scientist-in-Charge CECRI Madras Unit

पुष्य कार्यालय : कारैकुडी - 630 966, तमिलनाडु, भारत.

नी एस आई आर कॉम्एल्लेकस, चेन्ने - 600 113 इडिया 2254 2068, 2254 2819 ואזרכי कॉनसर्च इन तार

CSIR Complex, Chennal - 600 113 INDIA Phone : 2254 2068, 2254 2818 Grams : CONSEARCH Fax : 044-22542456/22541973/22541508 E.mail : bnl@vsnl.com

044-22542456/22541973/22541508

वेञ्ज्वीय विधुतरसायन अनुसंधान संस्थान - मद्रास यूनिट CENTRAL ELECTROCHEMICAL RESEARCH INSTITUTE - MADRAS UNIT

TEST REPORT

Page <u>5 of 12</u>

No: EC/M/B/TR-15/HBL12V80GVRLAB/2004

DATE: 06-12-2004

Issued to

जिस

: M/s. HBL NIFE POWER SYSTEMS LTD., Regd. Office: 8-2-601, Road No.10, Banjara Hills, Hyderabad - 500 034. : Nil

Sponsoring Authority Product Tested

: 12V 80Ah Tubular Gel Valve Regulated Lead Acid Secondary Batteries

RESULTS:

(f) Test for Capacity @ C20 Rate :

Rated Capacity (Ah)	110% of C_{10} (i.e. 88Ah) at C_{20} rate discharge @ 20^{0} C Capacity should not be less than 88Ah at C_{20} rate (discharge current 4.4A) @ 20^{0} C to an end voltage of 10.8 V	
Requirement		
Battery No.	1	
Observed Capacity (Ah)	107.6	

Technical Officer

(Testing)

.h.V. Annel

Scientist-in-Charge

CECRI Madras Unit

पुख्य कायलिय : कारेकुडी - 630 006, तमिलनाडु, भारत.

630-006 familiadu, India Karaikudi

्रारा आई.आर. क्रॉमप्लेकस,चेन्नै - 600 113 इंडिया 'भाष 2254 2068, 2254 2818 '... न तार कॉनसर्च

 CSIR Complex, Chennal - 600 113, INDIA

 Phone
 : 2254 2068, 2254 2013

 Grams
 : CONSEARCH

 Fax
 : 044- 22542456 / 2254 1973 / 2254 1508

 E.mail
 : bnl@vsnl.com

044-22542456/22541973/22541508

केन्द्रीय विधुतरसायन अनुसंधान संस्थान - मद्रास यूनिट CENTRAL ELECTROCHEMICAL RESEARCH INSTITUTE - MADRAS UNIT

TEST REPORT

Page <u>6 of 12</u>

No: EC/M/B/TR-15/HBL12V80GVRLAB/2004

DATE: 06-12-2004

 Issued to
 : M/s. HBL NIFE POWER SYSTEMS LTD., Regd. Office: 8-2-601, Road No.10, Banjara Hills, Hyderabad - 500 034.

 Sponsoring Authority
 : Nil

 Product Tested
 : 12V 80Ah Tubular Gel Valve Regulated Lead Acid Secondary Batteries

<u>RESULTS</u>:

(g) Test for Capacity @ C48 Rate :

Rated Capacity (Ah)	124% of C ₁₀ (i.e. 99.2Ah) at C ₄₈ rate discharge @ 20^{0} C	
Requirement	Capacity should not be less than 99.2Ah at C ₄₈ rate (discharge current 2.07A) @ 20^{0} C to an end voltage of 10.8 V	
Battery No.	· 1 ·	
Observed Capacity (Ah)	126.4	

Technical Officer (Testing)

M.V. A.

Scientist-in-Charge CECRI Madras Unit

मुख्य कार्यालय : कार्रिकडी - 630 006, तमिलनाड भाव

The Varabert Eta March .

echnical (Testing)

एख कार्यालय : कारैकडी - 630 006, तमिलना

Scientist-in-Charge CECRI Madras Unit

· · · · · · · · · · · · · · · · · · ·	
¹ .एस.आई.आर. कॉम्एलेकस.चेली - 600 11 रभाष 2254 2068. 2254 2818 न तार: कॉनसर्च .स 044- 22542456/ 22541973/ 22 वेरुद्रीय विधुतर CENTRAL ELECTROCH	13 इंडिया CSIR Complex, Chennai - 600 113 INDIA Phone 2254 2068, 2254 2818 Grams CONSEARCH 2541508 Fax 044-22542456/22541973/22541508 सायन अनुसंधान संस्थान - मदास यूनिट
	EMICAL RESEARCH INSTITUTE - MADRAS UNIT
	TEST REPORT
No: EC/M/B/TR-15/HBI <u>Issued to</u> : M R Spansoring And	L12V80GVRLAB/2004 DATE: 06-12-2004 1/s. HBL NIFE POWER SYSTEMS LTD:, legd. Office: 8-2-601, Road No. 10, Paris - Million and
<u>Product Tested</u> : 12 <u>RESULTS</u> :	11 V 80Ah Tubular Gel Valve Regulated Lead Acid Secondary Batteries
(j) <u>Test for Capacity</u>	<u>v@C240 Rate</u> :
Rated Capacity (Ah)	150% of C ₁₀ (i.e. 120Ab) at C ₂₄₀ rate discharge (a) 20^{0} C
Requirement	Capacity should not be less than 120Ah at C_{240} rate (discharge current 0.5A) @ 20 ⁰ C to an end voltage of 11.4 V
Battery No.	1
Observed Capacity (Ah)	125.4

V-Vechostor Technical Officer (Testing)

AV. Ammen In-Charge (Testing) C.R.N. C.HEMNA 44 CUNA Ċ, ÷ <u>ල</u>ා

Scientist-in-Charge CECRI Madras Unit

"1

۰.

r

Y

थी एस आई आर_कॉम्प्लेकस,चेन्नै - 600 । 13 इंडिया 2254 2068, 2254 2818 रिभाग डन तार कॉनसर्च

त्रेक्स

044-22542456/22541973/22541508

CSIR Complex, Chennal - 600 113, INDIA Phone 2254 2068, 2254 2818

Grams : CONSEARCH

Fax

: 044-22542456/22541973/22541508 E.mail : bnl@vsnl.com

केन्द्रीय विधुतरसायन अनुसंधान संस्थान - मदास यूनिट

CENTRAL ELECTROCHEMICAL RESEARCH INSTITUTE - MADRAS UNIT

<u>TEST REPORT</u>

Page 10 of 12

No: EC/M/B/TR-15/HBL12V80GVRLAB/2004

DATE: 06-12-2004

<u>Issuea to</u>	: M/s. HBL NIFE POWER SYSTEMS I TD
Sponsoring Authority	Regd. Office: 8-2-601, Road No.10, Banjara Hills, Hyderabad - 500 034. : Nil
Product Tested	: 12V 80Ah Tubular Gel Valve Regulated Lead Acid Secondary Batteries

RESULTS:

.

(k) Test for Charge Efficiency @ 90% State of Charge :

Rated Capacity (Ah)	80Ah at C_{10} rate discharge @ 20^{0} C Charge Efficiency should not be less than 85% at 90% State of Charge			
Requirement				
Battery No.	· 2	3		
Charge Efficiency Observed (%)	96.1%	96.8%		

Technical Officer (Testing)

In-Charge (Testany)

Scienti Charge CECRI Madras Unit

सी एस.आई आर. कॉमप्लेकस.चेन्ने - 600 113 इंडिया दूरभाष 2254 2068, 2254 2818 डन तार काँनसर्च

'केक्स

CSIR Complex, Chennal - 600 113 INDIA Phone : 2254 2068, 2254 2818

044-22542456/22541973/22541508

Grams : CONSEARCH Fax E.mail

: 044-22542456/22541973/22541508 : bnl@vsnl.com

केन्द्रीय विधुतरसायन अनुसंधान संस्थान - मदास यूनिट CENTRAL ELECTROCHEMICAL RESEARCH INSTITUTE - MADRAS UNIT

TEST REPORT

Page <u>11 of 12</u>

No: EC/M/B/TR-15/HBL12V80GVRLAB/2004

DATE: 06-12-2004

<u>Issued to</u>	: M/s. HBL NIFE POWER SYSTEMS 1 TD
Sponsoring Authority	Regd. Office: 8-2-601, Road No.10, Banjara Hills, Hyderabad - 500 034. : Nil
Product Tested	: 12V 80Ah Tubular Gel Valve Regulated Lead Acid Secondary Batteries

RESULTS:

(I) Test for Charge Efficiency @ 75% State of Charge :

Rated Capacity (Ah)	80Ah at C ₁₀ rate discharge @ 20^{0} C					
Requirement	Charge Efficiency should not be less than 90% at 75% State of Charge					
Battery No.	· . 2 3					
Charge Efficiency Observed (%)	98.3%	97.0%				

Vent Technical Officer (Testing)

Scientist-in-Charge CECRI Madras Unit

INVERTERS – TRUE POWER

STANDARDS ORGANISATION OF NIGERIA SONCAP

Page: 2 of 2

ation Sheet

	Product Description	Brand	Model No.	Manufacturer's Name & Address	Standard Reference	Country of Origin	Revalidation Date
-	II-136 - POWER SUPPLY, BATTERY CHARGERS AND UPS	TP TRUE POWER	SAPHIRE PURE SINE WAVE INVERTERS (650VA-850VA)	TRUE POWER INTERNATIONAL LTD. BG-135, SANJAY GANDHI TRANSPORT NAGAR, DELM-42, INDIA	IEC 62040-1-1: 2002 (1ST EDITION)	INDIA	26 NOVEMBER 2009
-	II-136 - POWER SUPPLY, BATTERY CHARGERS AND UPS	TP TRUE POWER	PLUTO PURE SINE WAVE INVERTERS (1450VA)	TRUE POWER INTERNATIONAL LTD. BG-135, SANJAY GANDHI TRANSPORT NAGAR, DELHI-42, INDIA	IEC 62040-1-1: 2002 (1ST EDITION)	INDIA	06 NOVEMBER 2009
-	II-136 - POWER SUPPLY, BATTERY CHARGERS AND UPS	TP TRUE POWER	HULK PURE SINE WAVE INVERTERS (2.0KVA)	TRUE POWER INTERNATIONAL LTD. BG-135, SANJAY GANDHI TRANSPORT NAGAR, DELHI-42, INDIA	IEC 62040-1-1: 2002 (1ST EDITION)	INDIA	06 NOVEMBER 2009
	II-136 - POWER SUPPLY, BATTERY CHARGERS AND UPS	TP TRUE POWER	HULK PURE SINE WAVE HIGH CAPACITY INVERTERS (2.5KVA-15.0 KVA)	TRUE POWER INTERNATIONAL LTD. BG-135, SANJAY GANDHI TRANSPORT NAGAR, DELHI-42, INDIA	IEC 62040-1-1: 2002 (1ST EDITION)	INDIA	06 NOVEMBER 2009

10.0.000

Product Certificate No.: COINM015122

Signed: Palcary

STANDARDS ORGANISATION OF NIGERIA

SONCAP

Page: 1 of 2

Product Certificate

STANDARDS ORGANISATION OF NIGERIA CONFORMITY ASSESSMENT PROGRAMME COINM015122 Product Certificate No .: TRUE POWER INTERNATIONAL LTD. Issued to: 27 NOVEMBER 2008 132 11 - Am Issue Date: antes inter of per ADDRESS: BG-135, SANJAY GANDHI TRANSPORT NAGAR, DELHI-42, INDIA Remarks: CONTRACTOR OF THE . . 23 Contraction (CHTERING THEY? 1775 · · · · · · The second days C.S.L. FL 1.30 Issued by: Ramakrishna Poluri SONCO, INM - ITS INDIA PRIVATE LTD. 5-Dickelant SONCO manager (Intertek)

This Product Certificate is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this Product Certificate. Only the Client is authorized to permit copying or distribution of this Product Certificate and then only in its entirely. Any use of the Intertek name for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek.

INVERTERS-NOVERGY

EC Declaration of Conformity

Manufacturer

Novergy Energy Solutions Pvt. Ltd., 1 Navlok Navratna Complex, Bedla Road, Udaipur-313001, India

The Directives covered by this Declaration

2004/108/EC Electromagnetic Compatibility directive, as amended 2006/95/EEC Low Voltage Equipment directive.

The Products Covered by this Declaration

IPC-E10 series of solar inverters.

The Basis on which Conformity is being Declared

The manufacturer hereby declares under his sole responsibility that the products identified above comply with the protection requirements of the EMC directive and with the principal elements of the safety objectives of the Low Voltage Equipment directive, and that the following standards have been applied:

EMC Testing:

Emissions testing to BS EN 61000-6-4: 2001 EN 55022:2007 Class A, Conducted Emissions EN 55022:2007 Class A, Radiated Emissions. Immunity testing to BS EN 61000-6-2:2005 EN 61000-4-2:1995 Electrostatic discharge immunity test1: Severity level $\pm 8kV$ air discharge and $\pm 4kV$ contact discharge. EN 61000-4-4:204 Electrical fast transient/burst immunity test1, for 1 minute each polarity, on the following: rectifier AC input port, severity level $\pm 2.0kV$ on each line to ground. rectifier DC output port, severity level $\pm 2.0kV$ with capacitive clamp. Functional earth ports, severity level $\pm 0.5kV$ EN 61000-4-5:1995 Surge immunity test1 on the following: rectifier a.c. input port, severity levels; $\pm 2kV$ line-to-earth.

EN 61000-4-6:2007 Immunity to conducted disturbances, induced by radio-frequency fields, 150kHz to 80MHz at a CW level of 10V with 1kHz, 80% a.m. on the following: DC output port. AC input ports.

Low Voltage Directive:

EN 60950-1: 2006 EN 50178: 1997 The technical documentation required to demonstrate that the products meet the requirements of the Low Voltage Equipment directive has been compiled and is available for inspection by the relevant enforcement authorities. The CE mark was first applied in 2009.

Issued by: C N Navalekar Authority: R&D Incharge Date: 21-Apr-2010

CE

CHARGE CONTROLLERS

EU-Konformitätserklärung 2008 EC-Declaration of Conformity 2008

Manufacturer

Phocos AG, Magirus-Deutz Strasse 12, D-89077 Ulm

hereby certifies on it's s	ole responsibility that the following products:
CML05-2	CML Charge Regulator 12/24 V 5/5 A, V2
CML05-2.1	CML Charge Regulator 12/24 V 5/5 A, V2, ROHS
CML05-2.1-NL	CML Charge Regulator 12/24 V 5/5 A, V2, Nightlight, ROHS
CML08-2	CML Charge Regulator 12/24 V 8/8 A, V2
CML08-2.1	CML Charge Regulator 12/24 V 8/8 A, V2, ROHS
CMLI0-2	CML Charge Regulator 12/24 V 10/10 A, V2
CML10-2.1	CML Charge Regulator 12/24 V 10/10 A, V2, ROHS
CML10-2.1-NL	CML Charge Regulator 12/24 V 10/10 A, V2, Nightlight, ROHS
CML15-2	CML Charge Regulator 12/24 V 15/15 A, V2
CML15-2.1	CML Charge Regulator 12/24 V 15/15 A, V2, ROHS
CML15-2.1-NL	CML Charge Regulator 12/24 V 15/15 A, V2, Nightlight, ROHS
CML20-2	CML Charge Regulator 12/24 V 20/20 A, V2
CML20-2.1	CML Charge Regulator 12/24 V 20/20 A, V2, ROHS
CML20-2.1-NL	CML Charge Regulator 12/24 V 20/20 A, V2, Nightlight, ROHS

Which are explicitly referred to by this Declaration meet the following directives and standards:

Directive 73/23/EEC, Electrical Apparatus Low Voltage Directive Directive 89/336/EEC, Electromagnetic compatibility Directive 93/68/EEC, CE Marking EN60730-1, EN60730-2-11

Documentation evidencing conformity with the requirements of the Directives is kept available for inspection at the company's address.

Zmin

Anton Zimmermann CTO

01.01.2008

Fraunhofer _{Institut} Solare Energiesysteme

Test and Measurement Protocol - Charge Controllers -

CML 10

Date 19.01.2004

DuT	Serial Number	Reference number
1	0332-k	001-PHC-1103
2	031130001 V. 4.0	002-PHC-1103

Table of contents

Evaluation	page	3
Detailed overview	page	4
Pretest	page	6
Functiontests	page	9
Detailtests	page	11
O.N.E statement	page	23
O.N.E charge controller specifications	page	24
Normative references	page	25
Overview of measurement equipment	page	26
DIN / ISO 9001:2000 Zertifikat	page	27

1. Evaluation / Summary

Description

• The charge controller CML 10 from phocos is a professional manufactured charge controller for lead acid batteries.

• Case workmanship is very good, the controller has an industrial manufactered printed circuit board. The charge controller is able for wall mounting.

• The wire connection is made via screw terminal. The terminal wire cross section is sufficiently high.

• The labeling and pictograms of the wire interface are complete and unmistakable.

• The charge controller has 5 LEDs to display different states of charging, state of battery, loaddisconnection warning and disconnected load. Additional the charge controller has a built in beeper for warning purposes.

• The labeling and pictograms of the LED display are complete and unmistakable.

• The documentation of the charge regulator is short but complete and clear.

• The charge controller is protected against: overload, short circuit load, short circuit and reverse polarity PV and reversed battery and transient voltages at PV terminals via varistors. Transient voltages at load terminal The controller has a night discharge protection implemented.

Evaluation of the test results:

Most of ISE requirements could be passed. Some tests could not be passed due to the special versions of the charge controllers we had under test. These versions are intended for use in systems with direct battery operation of the load (inverter). Therefore the LVD threshold of the charge controller was very low (11,12 V measured) and there was no current compensation built in. The standard version of CML 10 has a current compensation built in (LVD 11,5 V @ Iloadmax, 11,9 V @ Iloadmin according to manufacturer information).

The first tests showed that DuT 1 was defective. Therefore some tests were repeated with a second device.

Some recommendations:

for signalling of battery charging and charged battery a green LED should be used. (Remark: according to manufacturer information, the colours of the LEDs can be customized.)
the charge controller should be improved to withstand shorted battery terminals. (Remark: according to manufacturer information, the problem with shorted battery terminals is solved meanwhile.)

2. Detailed Overview

	Basic tests and features				c	
x	d Visual Inspection	page	8	x x	failed	not available
Х	end of charge voltage	page	9	х		
X	reconnect PV	page	9	Х		
Х	load disconnect warning on	page	9	Х		
Х	load disconnect	page	9		Х	
Х	reconnect load	page	9	х		
Х	Stresstest at max. current for 1 hour	page	10	Х		
Х	self consumption	page	11	Х		
Х	charge efficiency	page	13	Х		
Х	discharge efficiency	page	13	Х		
Х	Display	page	14	X		
	Fail-Save behaviour:					
х	Fail-Save behaviour: Operating with disconnected battery	page	15	X		
x	Fail-Save behaviour: Operating with disconnected battery Removing battery during normal operat.	page page	15 15	×		
X X X	Fail-Save behaviour:Operating with disconnected batteryRemoving battery during normal operat.Operating with extreme discharged bat.	page page page	15 15 15	X X X		
X X X	Fail-Save behaviour:Operating with disconnected batteryRemoving battery during normal operat.Operating with extreme discharged bat.Protection feactures:	page page page	15 15 15	X X X		
X X X	Fail-Save behaviour:Operating with disconnected batteryRemoving battery during normal operat.Operating with extreme discharged bat.Protection feactures:Protection against reversed polarity bat.	page page page page	15 15 15 16	X X X X		
X X X X	Fail-Save behaviour:Operating with disconnected batteryRemoving battery during normal operat.Operating with extreme discharged bat.Protection feactures:Protection against reversed polarity bat.Protection against reversed polarity PV	page page page page page	15 15 15 16 16	X X X X		
X X X X X	Fail-Save behaviour:Operating with disconnected batteryRemoving battery during normal operat.Operating with extreme discharged bat.Operating with extreme discharged bat.Protection feactures:Protection against reversed polarity bat.Protection against reversed polarity PVProtection against overloading	page page page page page	15 15 15 16 16	X X X X X X		
X X X X X X	Fail-Save behaviour:Operating with disconnected batteryRemoving battery during normal operat.Operating with extreme discharged bat.Operating with extreme discharged bat.Protection feactures:Protection against reversed polarity bat.Protection against reversed polarity PVProtection against overloadingProtection against overloading	page page page page page page	15 15 15 16 16 16	X X X X X X X		
x x x x x x x	Fail-Save behaviour:Operating with disconnected batteryRemoving battery during normal operat.Operating with extreme discharged bat.Operating with extreme discharged bat.Protection feactures:Protection against reversed polarity bat.Protection against reversed polarity PVProtection against overloadingProtection against overcurrent PVProtection against overcurrent PVProtection against overcurrent PV	page page page page page page page	15 15 15 16 16 16 16	X X X X X X X		
x x x x x x x x	Fail-Save behaviour:Operating with disconnected batteryRemoving battery during normal operat.Operating with extreme discharged bat.Operating with extreme discharged bat.Protection feactures:Protection against reversed polarity bat.Protection against reversed polarity PVProtection against overloadingProtection against overcurrent PVProtection against overcurrent PVProtection against overvoltage PVProtection against transient overvoltage	page page page page page page page	15 15 15 16 16 16 16 16	X X X X X X X X X		

Fraunhofer ISE

Х	Protection against short circuited PV	page	16	Х		
Х	Protection against short circuited battery	page	16		x	
	Recommended features					
ordere x	d Adjustment range of the thresholds	page	17	passed	failed	not available
Х	gassing function	page	9	Х		
х	Saving the state of gassing function	page	9			Х
х	Protection against current flow into PV	page	18	х		
х	Protection against overcurrent and -load	page	16	х		
	Additional tests					
	Additional tests long run test for 48 hour	page	19			
X	Additional tests long run test for 48 hour current compensation	page page	19 20			X
	Additional tests long run test for 48 hour current compensation temperature compensation	page page page	19 20 21			X
	Additional tests long run test for 48 hour current compensation temperature compensation DC/DC-converter	page page page page	19 20 21 22			X X X
	Additional testslong run test for 48 hourcurrent compensationtemperature compensationDC/DC-converterOperating with disconnected temp. Sens.	page page page page page	19 20 21 22 16			
	Additional testslong run test for 48 hourcurrent compensationtemperature compensationDC/DC-converterOperating with disconnected temp. Sens.Operating with short circuited temp.sens.	page page page page page	19 20 21 22 16 16			X X X X X
	Additional testslong run test for 48 hourcurrent compensationtemperature compensationDC/DC-converterOperating with disconnected temp. Sens.Operating with short circuited temp.sens.Operating with disconnected bat.volt.sens.	page page page page page page	19 20 21 16 16			x x x x x x x

3. Pretest

3.1. Information given by the manufacturer

Manufacturer	phocos				
Country/Origin	Deutschland				
Model/Type		CML 10			
Serial / Batch Nr.	1.	0332-k			
	2.	031130001 V. 4.0			

Mechanical data

Dimensions (I * w * h) [mm]	100x80x32
Weight [g]	180
Case material	plastic
Protection class (IP)	20
Case mounting	screws
Connection type	screw terminal
Cable stress relief	no
Cable diameter [mm ²]	max. 16
Label	yes

Electrical data

At ambient temperature of [°C]				25 °C	-		
Rated voltage		12V		24V	Х	12 & 24V	
Automatic adjustment 12/24V	Х	yes				no	
Max. module power [W]							
Max. charge current [A]				10,00			
Max. discharge current [A]			-	10,00			
Type of controller		shunt	х	serial		other:	
Technique of regulation		two point	х	PWM		other:	
Self consumption [mA]				4			
End of charge voltage [V]			1	3,7 (float voltag	je)		
return switch-on voltage (two point							
regulation) [V]							
load disconnect warning on [V]			1	1,0 < Vbatt < 1	1,5		
load disconnect voltage [V]				11			
time delay at load sheding [s]		2	2 120	sec. current d	ependi	ng	
Reconnection voltage load [V]				12,8			
time delay at reconnection [s]				no information			
load reconnection manually [V]				no			
operation temperature range [°C]	20 up to +50						
display	Х	LED		LCD		LED & LCD	

additional functions

gassing function	Х	yes			no
gassing activation voltage (equal)					
[V]	l		12,3		
final gassing voltage					
(equalisation) [V]	1		14,5		
gassing activation voltage (boost)					
[V]			12,1		
	I		44.0		
	V		14,8	_	200
I emperature compensation	Х	yes			no
temperature compensation	1				
[mV/K*cell]			-3		
Battery voltage sensor		yes		Х	no
DC/DC-Converter		yes		Х	no
MPPT		yes		х	no
adjustable for different battery					
types		yes		х	no
adjustable thresholds		yes		Х	no
end of charge [V]		min.			max.
load disconnect [V]		min.			max.
selectable priority at load					
disconnection		yes		х	no
Protection against reversed					
battery polarity	Х	yes	no		not specified
Protection against reversed PV					
polarity	Х	yes	no		not specified
Others					
	L				

listed values rated for

x 12V

24V

Other

Interfaces	no
Price	not available
Service	only manufacturer website
Warranty	no information

3.2. Visual Inspection

Connection type		plug	х	screw		other:		
Cable stress relief		0.k.		not o.k.	Х	not av	ailable	_
Cable diameter stranded [mm^2]		2,5		4		6	х	10
Cable diameter solid [mm^2]		2,5		4		6	Х	10
Case quality		very good	х	good		bad	-	
Connector quality	Х	very good		good		bad		
Electronic quality	Х	very good		good		bad		
Packing of charge contr.		very good	х	good		bad		
Lettering of packing		very good	х	good		bad		
Usability		very good	Х	good		bad		
Fuse changing		very good		good		bad	Х	n.a.
Mounting of charge contr.		very good	х	good		bad	-	
Others:					-	-		
Comment quality	very g	ood qualitiy						
Damages		yes			Х	no		

Lettering of the charge controller

			_				
Manufacturer	х	yes			no		
Model / type	х	yes			no		
Serial / batch number	х	yes			no		
Nominal voltage	х	yes			no		
Connectors	х	yes			no	_	
Fuse		yes			no	Х	n.a.
LED, displays	х	yes			no	-	
Comment label:			o.k.	-			

Documentation

Data sheet	Х	o.k.	not o.k.		not available
User manual	Х	o.k.	not o.k.		not available
Installation instructions	Х	o.k.	not o.k.		not available
Operating instructions	Х	o.k.	not o.k.		not available
Troubleshooting guide	Х	o.k.	not o.k.		not available
Calibration instructions		o.k.	not o.k.	х	not available
Safety instructions	Х	o.k.	not o.k.		not available
Others			no		
Comment documentation					

Spare parts

Fuse	availabe	Х	not available
Mounting parts	availabe	х	not available
Connectors	availabe	Х	not available
Others	no		
Comment spare parts			

Support

Repair / Service address		availabe	Х	not available	
Warranty		availabe	Х	not available	
Others	website of manufacturer				
Comment support	A support address should be delivered				

Is it possible to test the charge controller?

x passed

failed

no

4. Functiontest

4.1. Voltage thresholds

Ambient temperature:	21,3 °C
Rated voltage:	12,0 V

DuT	1	2
Reference	001-PHC-1103	002-phc-1103
Date:	17.11.03	10.12.2003
Inspector:	NP	NP

Voltage thresholds	Specification (manufacturer) [V]	Measur 1.	red [V] ¹⁾ 2.		p / f	Remarks
End of charge voltage	13,7		13,58	13,69	р	13,58 V PWM start, 13,69 V PV current cut off
Gassing final voltage (equalisation)	14,5		14,42	14,48	р	14,42 V PWM start, 14,48 V PV current cut off
Gassing final voltage (boost)	14,8		14,73	14,80	р	14,73 V PWM start, 14,80 V PV current cut off
Return switch-on voltage (two point regulation)		 				
Load disconnect warning on	11,5 > Vbatt > 11,0		11,20		р	
Deep discharging cut- off voltage	11,0		11,12		f	LVD threshold too low
Reconnect voltage load	12,8		12,86		р	
Load reconnect manually		 				

1) Measured in 10 mV-steps

Time delay load disconnect [s]:	> 60 s		
Time delay load reconnect [s]:	not mea	asured	
Type of controller	serial co	ontroller	
equal to manufacturer data:	х	yes	no

Remarks: LVD voltage threshold is too low, recommended is > 11,4 V						
Used measurement equipme	Vbat:	Agilent HP 34401A				
	Ta:	Tinsley 5885A				

reason of failing?

passed see remarks

x failed

4.2. Stresstest at max. currents for 1 hour

Ambient temperature:	23,1 °C
Rated voltage:	12,0 V
Rated max. charge current:	10,0 A
Rated max. discharge current:	10,0 A

DuT	1	2
Reference	001-phc-1103	
Date:	19.11.03	
Inspector:	np	

time	PV-m	odule	Bat	tery	loa	ad	Theats	DuT
[min]	[V]	[A]	[V]	[A]	[V]	[A]	°C	
0	13,20	10,01	13,00	0,00	12,89	10,03	21,8	1
								2
15	13,22	9,99	13,00	0,00	12,88	10,05	40,7	1
								2
30	13,22	9,99	13,00	0,11	12,87	10,09	41,9	1
								2
45	13,22	9,98	12,99	0,13	12,87	10,10	44,1	1
								2
60	13,22	9,98	12,99	0,13	12,87	10,11	44,5	1
								2
								1
								2

Remarks:		
Used measurement equipment:	Vbat:	Zimmer LMG95
	lbat:	Zimmer LMG95
	Vpv:	Zimmer LMG95
	lpv:	Zimmer LMG95
	Vload:	Zimmer LMG95
	lload:	Zimmer LMG95
	Ta:	Tinsley 5885A
	Tc:	Tinsley 5885A

x passed

5. Detailtest

5.1 Self consumption

Ambient temperature:	22,4 °C
Rated voltage:	12,0 V

DuT	1.	2.
Reference	001-PHC-1103	002-PHC-1103
Date:	18.11.03	11.12.2003
Inspector:	NP	NP

				DuT
max. Selfconsumption:		mA @	V	1
	6,8	mA @ 16,0	V	2

Comment:	at 16 V the charge controllers recognises "overvoltage" and LEDs load disconnect and battery full lit both. Therefore the selfconsumption raises (information of the manufacturer).				
Used measurement equipment:		lbat:	Agilent HP 34401A		
		Ubat:	Zimmer LMG 95		
		Ta:	Tinsley 5885A		

х	passed	
---	--------	--

Measured data:

Nr.	Batt.	Self	Self		Self	Self		
	Volt.	consumpt.[consumpt.		consumpt.[consumpt.		
	[V]	mA]	[mW]	remarks	mA]	[mW]	remarks	
	↑ ↓	₩	. ↓	. ↓		1	1	DuT
								1
1	11,0	3,33	36,63	low batt LED (yellow) flashing; 25 beeps	3,32	36,52	low batt LED (yellow) flashing; 25 beeps	2
								1
2	12,0	3,37	40,44	low batt LED (yellow) on	3,37	40,44	low batt LED (yellow) on	2
								1
3	13,0	3,43	44,59	high batt LED (yellow) on	3,43	44,59	low batt LED (yellow) on	2
								1
4	14,0	4,52	63,28	high batt LED (yellow) on	4,52	63,28	high batt LED (yellow) on	2
								1
5	15,0	4,59	68,85	high batt LED (yellow) on	4,58	68,70	high batt LED (yellow) on	2
								1
6	15,5	4,62	71,61	high batt LED (yellow) on	4,62	71,61	high batt LED (yellow) on	2
								1
7	16,0	6,78	108,48	high batt LED (yellow) on plus load disconnect LED (red) on				2

5.2. Efficiencies

Ambient temperature:	22,0	°C
Rated voltage:	12,0	V
Rated max. charge current:	10,0	А
Rated max. discharge current:	10,0	Α

DuT	1	2
Reference	001-PHC-1103	
Date:	18.11.03	
Inspector:	NP	

min. charge efficiency [%]:

1.

2.

Remarks: very high efficiencies		
Used measurement equipment:	Vbat:	Zimmer LMG 95
	lbat:	Zimmer LMG 95
	Vpv:	Zimmer LMG 95
	lpv:	Zimmer LMG 95
	Vload:	Zimmer LMG 95
	lload:	Zimmer LMG 95
	Та:	Tinsley 5885A

5.3. Display

Ambient temperature:	20,0 °C
Rated voltage:	12,0 V

	1.	2.
Reference	001-phc-1103	
Date:	19.11.03	
Inspector:	np	

	p/f	DuT
nominal operation indicated by a green LED	р	1
		2
load disconnection warning indicated by a yellow LED	р	1
		2
load disconnection indicated by a red LED	р	1
		2

Remarks:	nominal operation is indicated by a yellow LED, recommended is a greenmarks:LED(According to the manufacturer, the colours of the LEDs can be customized.)				
Used measurement	nt equipment: Vbat: Zimmer LMG95				
		Ibat:	Zimmer LMG95		
		Vpv:	Zimmer LMG95		
		lpv:	Zimmer LMG95		
		Vload:	Zimmer LMG95		
		lload:	Zimmer LMG95		
		Ta:	Tinsley 5885A		

Х	bassed
---	--------

5.4 Fail-safe behaviour

Ambient temperature:	21,4 °C
Rated voltage:	12,0 V

DuT	1	2
Reference	001-phc-1103	
Date:	19.11.03	
Inspector:	np	

Test	Behaviour / results			DuT
operating with discopported battory:	no damages could be observable		е	1
operating with disconnected battery.	V load = 0,04 V	р	Passed/failed	
				2
	V load = V		Passed/failed	
romoving battory during pormal operation:	No observable damages			1
	V load = 12,01 V	р	Passed/failed	
				2
	V load = V		Passed/failed	
Operating with extreme discharged	charging current possible			
battery (e.g. VBatt. = 6 V)	down to 6,3 V	р	Passed/failed	1
			Passed/failed	2
Operating with disconnected temperature				
sensor	no temp. sens. available		Passed/failed	1
			Passed/failed	2
Operating with short circuited temperature				
sensor	no temp. sens. available		Passed/failed	1
			Passed/failed	2
Operating with disconnected				
battery voltage sensor	no battery sens. available		Passed/failed	1
			Passed/failed	2
Operating with short circuited battery				
voltage sensor	no battery sens. available		Passed/failed	1
			Passed/failed	2

Remarks:		
Used measurement equipment:	Vbat:	Zimmer LMG95
	Ibat:	Zimmer LMG95
	Vpv:	Zimmer LMG95
	lpv:	Zimmer LMG95
	Vload:	Zimmer LMG95
	Iload:	Zimmer LMG95
	Ta:	Tinsley 5885A

x passed

5.5 Protection Features

Ambient temperature:	22,6 °C
Rated voltage:	12,0 V

DuT	1	2
Reference	001-phc-1103	002-phc-1103
Date:	19.11.03	11.12.2003
Inspector:	np	np

Tost	Behaviour / results			
	DuT 1	p/f	2	p/f
Protection against short circuited PV			no damages observable	р
Protection against reversed polarity PV Module	No damages observable, but the heatsink is running very hot. There were a power dissipation of 12 W at the end of the test. Test aborted.	f	test repeated: no problems observable	р
Protection against overcurrent at PV side	No damages observable	р		
Protection against overvoltage at PV side over one hour	no damages could be observed	р		
Protection against transient overvoltage (diodes, varistors)	Load side:according to information of the manufacturer, the load side is protected against transient voltages using the internal load switch (MosFET). PV side:varistor available	р		
Protection against short circuited load	No damages observable. Red LED was flashing during short circuit.	р		
Protection against overload	No damages observable	р		
Operation with reversed polarity battery	No damages observable. Beeper was ringing. Test canceled because of too high battery current. The heatsink is running very hot (heatsink temperature over 90 °C).	f	test repeated: no problems observable	р
Protection against short circuited battery			Heatsink is running very hot, test cancelled	f

	DuT 1 was de	fective.	. Therefore test were repeated.		
Remarks:	According to manufacturer information, the problem with the test "short circuit				
battery" is solved meanwhile.					
Used measurement	equipment:	Vbat:	no battery sens. available		
		Ibat:	Zimmer LMG95		
		Vpv:	no battery sens. Available		
		lpv:	Zimmer LMG95		
		Vload:	Zimmer LMG95		
		lload:	Zimmer LMG95		
		Та:	Tinsley 5885A		

passed

5.6 Adjustment range of thresholds

_ / / //		
Rated voltage:	V	

	1.	2.
Reference		
Date:		
Inspector:		

Minimum value:

Voltage thresholds	manuf. value [V]	Measured [V] 1. 2.		p/f	Remarks
End of charge voltage					
load disconnect					

Maximum value:

Voltage thresholds	manuf. value [V]	Measured [V] 1. 2.		p/f	Remarks
End of charge voltage		ttery sens. ava			
load disconnect					

Remarks:	threshold only factory setable					
Used measure	ement equipment:	Vbat:	Zimmer LMG 95			
		Ibat:	Zimmer LMG 95			
		Vpv:	Zimmer LMG 95			
		lpv:	Zimmer LMG 95			
		Vload:	Zimmer LMG 95			
		lload:	Zimmer LMG 95			
		Та:	Tinsley 5885A			

passed

failed

Г

5.7 Options

Ambient temperature:	20,9 °C
Rated voltage:	12,0 V

DuT	1	2
Reference	001-phc-1103	002-phc-1103
Date:	26.11.2003	
Inspector:	np	

Test	Behaviour / results Ref.1	p/f	Behaviour / results Ref. 2	p/f
Protection against current flow into the PV	reverse current is 0,1 mA @ 14 V	р		

Remarks:		
Used measurement equipment:	Vbat:	Zimmer LMG95
	Ibat:	Zimmer LMG95
	Vpv:	Zimmer LMG95
	lpv:	Zimmer LMG95
	Vload:	Zimmer LMG95
	Iload:	Zimmer LMG95
	Ta:	Tinsley 5885A

x passed

5.8 Long run test (48h)

>	T	est	S	were	not	ord	ered

Ambient temperature: °		
Rated voltage:	V	
Rated max. charge current:	А	
Rated max. discharge current:	А	

	1.	2.
Reference		
Date:		
Inspector:		

time	PV-m	odule	Bat	tery	lo	ad	Tcase	Ref.
[h]	[V]	[A]	[V]	[A]	[V]	[A]	°C	
0								1.
								2.
12								1.
								2.
24								1.
								2.
36								1.
								2.
48								1.
								2.
								1.
								2.

Remarks:		
Used measurement equipment:	Vbat:	Zimmer LMG95
	Ibat:	Zimmer LMG95
	Vpv:	Zimmer LMG95
	lpv:	Zimmer LMG95
	Vload:	Zimmer LMG95
	lload:	Zimmer LMG95
	Ta:	Tinsley 5885A
	Tc:	Tinsley 5885A

passed

5.9 Current compensation

Ambient temperature:	°C
Rated voltage:	V
Rated max. discharge current:	A

DuT	1	2
Reference	001-phc-1103	002-phc-1103
Date:		
Inspector:	np	np

Remarks:	The CML 10 charge regulator has normally a current compensation built in. The DuT were special versions without a current compensation. These versions are intended for direct battery operation of the load. The current compensation tests were therefore not		
Used measurement	Jsed measurement equipment: Vbat:		Zimmer LMG95
		lbat:	Zimmer LMG95
		Vpv:	Zimmer LMG95
		lpv:	Zimmer LMG95
		Vload:	Zimmer LMG95
		lload:	Zimmer LMG95
		Ta:	Tinsley 5885A

5.5. Temperatur compensation

--> Tests were not ordered

Ambient temperature:	°C
Rated voltage:	V

	1.	2.
Reference		
Date:		
Inspector:		

Voltage thresholds	ambient temperature [°C]					temp. Comp mV/ K*cell	Ref.
	25	55	25	-10	25		
End of charge voltage [V]							1. 2.
Final gassing voltage (equal.) [V]							1. 2.
Final gassing voltage (cycle) [V]							1. 2.
Reconnect voltage PV [V]							1. 2.
Deep discharging cut-off voltage [V]							1. 2.
Reconnect voltage load [V]							1. 2.

Operation at

case!

Remarks:		
Used measurement equipment:	Vbat:	Zimmer LMG95
	lbat:	Zimmer LMG95
	Vpv:	Zimmer LMG95
	lpv:	Zimmer LMG95
	Vload:	Zimmer LMG95
	lload:	Zimmer LMG95
	Та:	Tinsley 5885A

passed

5.10 DC/DC-Converter

Ambient temperature:	°C	
Rated voltage:	V	
Radio simulated with		

	1.	2.
Reference		
Date:		
Inspector:		

jumper position	battery voltage [V]	battery current [mA]	radio voltage [V]	radio current [mA]	remarks	Ref.
•				• •		1.
						2.
						1.
						2.
						1.
						2.
						1.
						2.
						1.
						2.
						1.
						2.
						1.
						2.
						1.
						2.

Remarks:	no DC/DC-converter built in		
Used measurement equipment:	Vbat:		
	Ibat:		
	Vradio		
	Iradio:		
	Ta:		

O.N.E statement

٨						
T	Uffice N	الكب الرط يعي 20 ational de l'Electricité	DIRECTION DE L'ELECT	RIFICATION R	URALE	
			DER/RC	0/831/2003		
		т	élécopie			
Α:	Monsieur ISE- Frau	Norbert Pfanner	élécopie			
A : Objet:	Monsieur ISE- Frau Certificati	Norbert Pfanner nhoter on du régulateur de cha	élécopie	Prost role	Date	20

Monsieur Norbert Pfanner,

En réponse à votre fax cité en référence, nous vous informons que nous acceptons les certificats de test délivrés par votre Institut dans la mesure qu'ils sont accompagnés par le rapport de test.

Nous vous prions d'agréer, Monsieur, l'expression de nos salutations distinguées.

DIRECTION DE L'ELECTRIFICATION RURALE Le Chet de la Division Réseaux Décentralisés et Energies Renouvelables

Siège : 65, Rue Othman Ben Affan 20 000 Casablanca Maroc E-Mail : OFFELEC@one.org.ma. Tél : (212) 22 66 80 80 Télécopieur : (212) 22 22 00 38:66 80 89 DIRECTION DE L'ELECTRIFICATION RURALE Tél : 022 75 45 01, Fax : 022 75 45 07

ONE specifications

ONE SD40727 specification for charge controllers

Electrical specifications

Nominal voltage : 12Vdc Charge current : min 10A Load current : min 15A Self consumption (including lights) <10mA Charge control mode : PWM End of charge and low voltage disconnect functions are compulsory End of charge voltage : 14,1V +/- 3% Overcharge voltage : 14,5 +/- 3% Floating voltage : 13,8V +/- 3% Low voltage disconnect : 11,4V +/- 3% Hysteresis : 1V to 1,5V Temperature range (operating) : -10 Celsius to +50 Celsius Efficiency of charge circuit : > 90% Efficiency of load circuit : > 90% Light indications for the following conditions: - battery being charged

- battery charged
- battery discharged

Security

Controller must be protected against reverse connection of battery and solar panels. Controller mus be protected against short circuits in the load circuit (fuses must be readily available in the local marketplace and well calibrated).

Controller must be protected against night discharge of the battery into the solar panels. Controller must be protected against transient overvoltage from lightning strikes.

Mechanical specifications

Enclosure material : acid, UV and shock proof. Labelling and pictograms (inside and outside): must be durable. Connections : screw type terminals, minimum section 4 mm2. Wall mounting.

Normative References

At present, there are no mandatory national or international norms and test procedures for charge regulators available. Therefore FhG-ISE has decided to developed its own "test standard" and procedures.

This ISE "standard" for charge controllers is based on recommendations such as PV-GAP, World Bank or "Universal Technical Standard for Solar Home Systems". The ISE "standard" is much more comprehensive and in detail stronger than these recommendations. The ISE "standard" therefore "contains" the most important recommandations.

Overview of measurement equipment used (following DIN ISO 9001:2000)

device	type	measured dimensions	reference number following DIN EN ISO 9001:2000
Agilent HP 34401A	System-Multimeter	voltages, currents up to 3 A	421-DC-10 421-DC- 11
Zimmer LMG 95	Precision-wattmeter	voltages, currents up to 20 A, power	421-DC-16 421-DC-25 421-LI-5
Tinsley 5885A	multi channel temperature measurement device	temperatures	421-DC-24
Temperature sensor	Pt 100	temperatures in conjunction with Tinsley 5885A	421-DC-24.1 421-DC-24.2
Tektronix TM502A	external current probe amplifier	currents in conjunction with A6302	421-DC-15.1 421-DC-15.2
Tektronix TDS 3014	4-channel-digital oszilloscope	voltages (rms-, mean-, peak- values), currents (rms-, mean-, peak-values), power, frequeny, fourier-analyses	421-DC-22
Tektronix P5205	High voltage differential probe	potential free measurement of high voltages with high frequencies	421-DC-23

