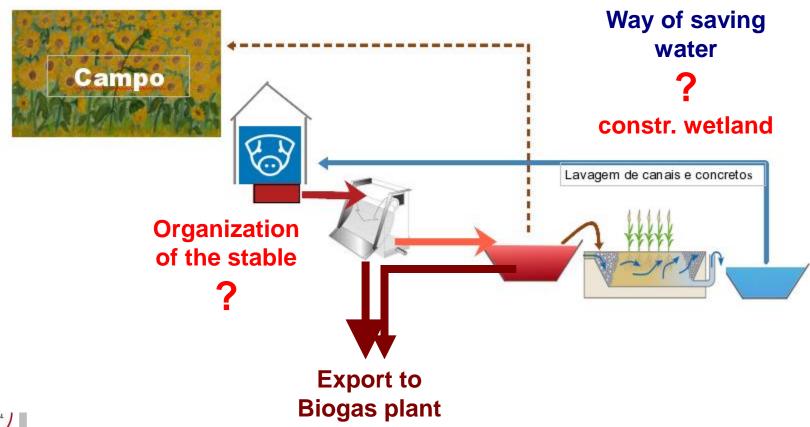
Seminar Biogas Eletrosul

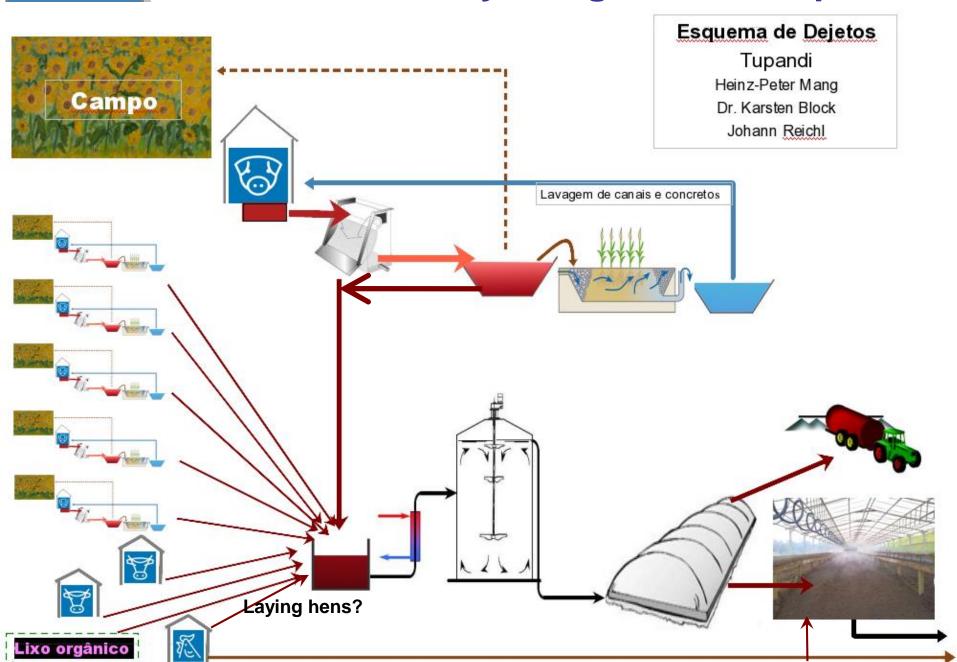
Florianopolis 8. - 10. Dezember 2010

Main Problems of Tupandi-Farmers

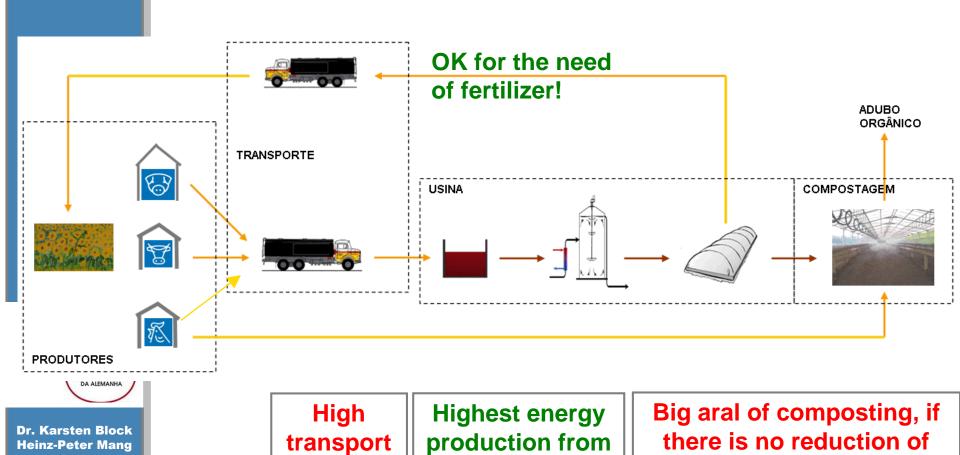

 High water consumption on the pig-farms

Too much nutrients in the slurry

Heinz-Peter Mang


Farm-scheme of de-fertilization and water reduction

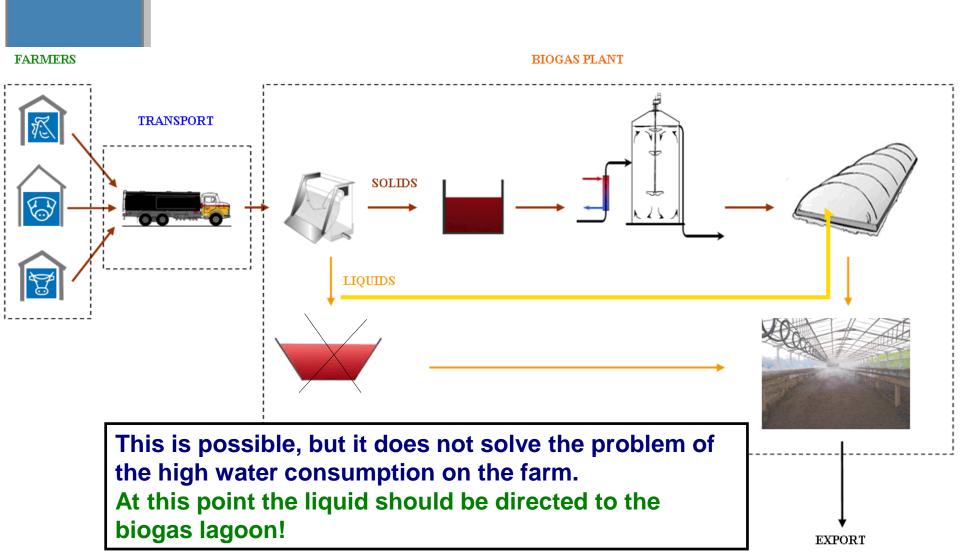
COOPERAÇĂ
REPÚBLICA FEDERATI
DO BRASIL


REPÚBLICA FEDERAL
DA ALEMANHA

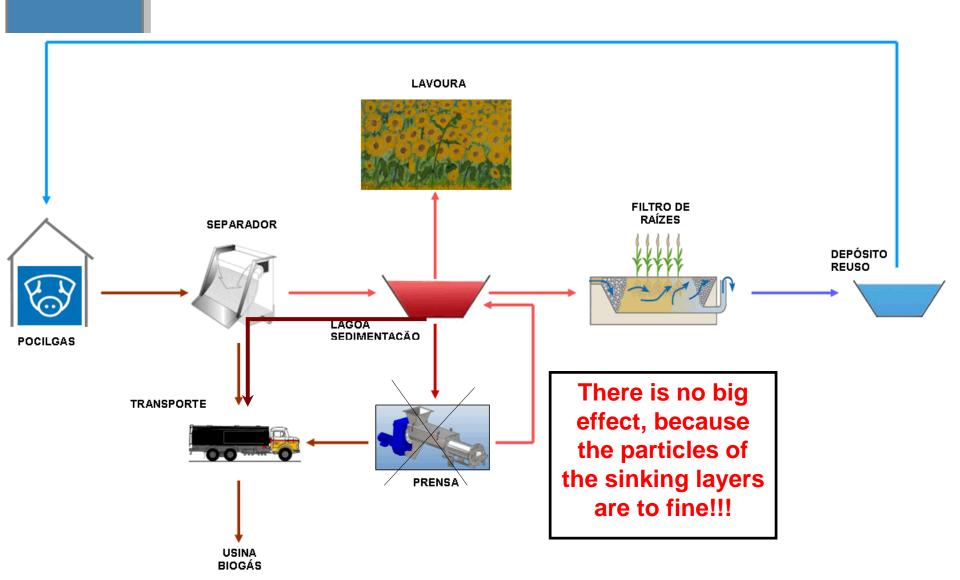
Scheme of Slurry & Digestate in Tupandi

Schema Eletrosul:

complete slurry is transported to the biogas plant



biogas


water on the pig farms

capacity

Central Separation

Proposal of Eletrosul

Main Problems of Tupandi-Farmers

 High water consumption on the pig-farms

Too much nutrients in the slurry

Heinz-Peter Mang

Structure of the target group network Tupandi

Group representatives	Function & role
1. Policy makers from the selected regions.	Promoting
2. Local, regional and national authorities	Contractual partners & co- operators
3. Energy and energy trade companies	Contractual partners & buyer of electricity
4. Energy and environmental agencies	Monitoring
5. Farmers and farmers associations and organizations	Contractual partner, waste producer, fertilizer user & co-operators
6. Local food processing industries	Waste producer, heat energy user
7. Veterinary services and control authorities	Monitoring
8. Energy and environment planning authorities.	Contractual partners & investors
9. Financing institutes	Financial services & Ioans

Manure Management = Triple Win

(Eletrosul)

protection of water resources **Municipalities** through less contamination Site conservation, environmental protection Livestock farms Renewable energy production **Energy supplier**

Municipality of Tupandi

	Benefits					
	New business, new local activity					
	New jobs, up to 10 directly associated to the biogas					
Rural development ፟⊳	plant operation and transport services					
	Implementation of green heat and electricity					
	Increased waste recycling					
	Protection of fresh water systems					
	Improved hygienic standards due to sanitation of					
Environmental improvements	manure					
	Less odor nuisances					
	Contribution to meet national environmental targets					
Green House Gas reduction	Reduction of CO ₂ , CH ₄ , N ₂ O emissions					

Farming sector, with livestock and crop or fruit production

Benefits								
Cheap and easy way to dispose waste	Environmental friendliness can be used as argument for marketing purposes							
Improved image for stable business	Easy compliance with requirements on waste recycling							
Meet hygienic standards	Reduce fresh water consumption							
Improved fertilizer and soil conditioner available	No contribution to groundwater pollution							

Eletrosul and local grid company

Ben	efits
Energy from renewable source at competitive prices	The satisfaction of environmental energy consumption
Market options for green electricity trade	Market options for heat from renewable sources
Construction and operation of extensive technical facilities	Market for financing and insurance of extensive technical facilities.

Problems of the calculations with slurry

Summary information, calculated by ELETROSUL

	Substrate	Quantity of animals	Quantity	TS (%)	VS (% _{TS}) (oTS)	t TS	t oTS
	Fattening Swines	26.910	56.511 m³/a	14,1%	57,2%	7.968	4.558
alle	Sows and Suckling Swines	7.973	65.111 m³/a	3,6%	61,5%	2.344	1.442
aun	Suckling Swines	32.000	13.440 m³/a	3,4%	54,5%	457	249
ž	Cattle	560	1.970 t/a	18,4%	50,1%	362	182
	Poultry &	90.000	1.800 t/a	21,5%	51,6%	387	200
Sur	m from Surry without Poultry		137.032 m³/a			11.131	6.430

Calculation of Slurry on Base of the Animals (on Base of German experience [1])

Substrate		Quantity of animals	Quantity dung/a	Slurry per animal & year ¹	TS % ¹	t TS	Differenz BR - DE
	Fattening Swines	26.910	72.657 m³/a	2,7 m³/a	5,0%	3632,85	4335,201
<u>e</u>	Sows and Suckling Swines	7.973	74.946 m³/a	9,4 m³/a	3,5%	2623,1	-279,121
aun	Suckling Swines	32.000	25.600 m³/a	0,8 m³/a	5,0%	1280	-823,04
Ž	Cattle	560	11.312 m³/a	20,2 m³/a	10,0%	1131,2	-768,72
	Poultry	90.000	2.019 ∜a	0,02243 ∜a	50,0%	1009,35	-622,35
Sui	n from Surry without Poultry				*	8.667	

Comparison of the production of slurry: Data German / Brasil

Substrate	Slurry per animal & year ¹	Slurry per animal & year ²	Slurry per animal & vear ³		
Fattening Swines	2,7 m³/a	2,6 m³/a	2,1 m³/a		
Sows and Suckling Swines	6,4 m³/a	9,9 m³/a	8,1 m³/a		
Suckling Swines	0,800 m³/a	0,511 m³/a	0,420 m³/a		
≥ Cattle	20,2 m³/a	m³/a	m³/a		
Poultry	0,02243 ∜a	t∕a	t∕a		

Dr. Karsten B Heinz-Peter N

gtz

COOPER REPÚBLICA FE

- 1 LfL Basisdaten für die Ermittlung des Düngungsbedarfs, Stand Juli 2010
- 2 FATMA: Instrução ormativa IN-11 / Suinocultura
- 3 ELETROSUL: Survay of slurry in tupandi

Calculations on base of the nutrients

Tupandi: current situation

No.		Number of livestock	Nutrients (kg)	Slurry					
	Animal species		N (-losses in stable)	N (- losses of distribution)	P ₂ O ₅	K ₂ O	Total amount (t, m³)	DM	Total t of DM
	Excrements		545.605	465.701	372.731	420.311	104.007		7.271
	Fattening swines; 700 g daily weight increase; 28 to 117 kg; standardized feed	26910	224.160	192.778	148.005	150.696	40.365	7,50%	3.027
1046	Sows & piglets; piglets up to 8 kg; 20 grown up piglets; 200 kg weight increase per place and year; standardized feed	7973	146.225	125.753	107.636	90.095	31.892	4,00%	1.276
	Piglets from 8 to 28 kg; 130 kg weight increase per place and year; standardized feed	32000	76.608	65.883	51.200	70.400	19.200	4,00%	768
1032	Milking cow, 8000 kg milk	560	56.168	46.058	22.960	76.720	11.200	10,00%	1.120
1067	Laying hens; 17,6 kg mass of egg; standardized feed	90000	42.444	35.229	42.930	32.400	2.160	50,00%	1.080

Required arable land (about) on base of Area of Tupandi Total (http://pt.wikipedia.org/wiki/Tup 90 kg P₂O₅/ha*year =

4.141 ha

59,541 km2 *100 =

5.954 ha

* 40 % arable land (???) =

2.381,6 ha

Reduction of DM and nutrients depending on different separation technology

	Red	duction in %	of
Technology	DM	N	P ₂ O ₅
Curved screen [15]	6 - 31	3 - 6	2 - 12
Screw press separator [10]	37	15	17
Lagoon for sedimentation [16]	56	33	52
Expected total reduction	60	38	66

Situation Tupandi after separation and cleaning lagoon

Tupandi: Result of sparation & lagoon on the situation of nutrients nutrients

N (-losses	in stable)	P ₂	O₅	Total a		Total t of DM	Total t of FM solids
545.	.605	372.	.731	102.657	6,0%	6.191	estimated
	export of		export of			export of	
Fluid	Solids	Fluid	Solids	Fluid		Solids	DM
62%	38%	34% 66%		40%		60%	10%
338.275	207.330	126.729	246.002	65.511	3,8%	3.715	37.146

Required arable land 90 kg P₂O₅/ha*year =

1.408 ha

Area of Tupandi Total (59,5

59,541 km2 *100 =

5.954 ha

* 40 % arable land (???) =

2.381,6 ha

Input for biogasplant:

3.715 t DM

10 % content of DM

37.146 t FM (estimated)

Biogas Potential from all slurry

Tupandi: Theoretical potental of Biogas from slury

9,8 kWh/I

59.652 VYear

15.199.268 kWh

Animal places or ha	Substrate	Slurry per place and year	Slurry/day	Costs of Substrates	Total costs substrates	Mass of substrate	Content of DM	Dry matter	Content of organic DM (oDM)	Specific gas-yield	Gasvolum e	Content of methane	Energy from biomass
		[t or m³]	[m³ ort/d]	[€/ha, m³,t]	[€]	[t]	[%]	[t]	[%]	[Ykg oDM]	[m³]	[%]	[kWh]
7.973	Saws with piglets	4,00	87,4	0	0€	31892	4,0	1.276	85,0	400	433.731	60,00	2.602.387
32.000	Piglets, Slurry	0,60	52,6	0	0€	19200	4,0	768	85,0	400	261.120	60,00	1.566.720
26.910	Fattening swines	1,50	110,6	0	0€	40365	7,5	3.027	85,0	400	1.029.307	60,00	6.175.845
90.000	Laying hens	0,024	5,9	0	0€	2160	50,0	1.080	85,0	650	596.700	55,00	3.281.850
560	Cows	20,00	30,7	0	0€	11200	10,0	1.120	85,0	300	285.600	55,00	1.570.800
0	Solids from slurry	1,00	0,0	0	0€	0	10,0	0	90,0	360	0	55,00	0
	Sum / Mean		287,2		0€	104817	6,9	7.271			2.606.459		15.197.602

Total Energy					Electrical E	nerg	y	Digester				
Yield biogas			2.606.459	m³/Year	Motor runtime	82 00	hours/a	1.854	kW/h	Substrate/d	287,2	[m³/d]
Energy gross		Ar S	15.197.602	kWh	Electric efficiency	35	%	649	kW el.	Retention time	20	[d]
No gas	14	days/year	96,2	% available	Energy supply			5.319.744	kWh	Volumetric loading	2,9	[kg oTS/m³ d]
Energy net			14.614.680	kWh	Payment	0,100	R\$	53 1.974	R\$/Year	Volume digester	5.743	m ³
Fuel initiates	1	% share	584 587	k\Mb	(55			S		22	2	

Dr. Karsten Block Heinz-Peter Mang

Total available energy

Biogas from solids and sinking layers

Tupandi: Theoretical potential of Biogas from slurry

9,8 kWh/I

25.982 VYear

6.620.143 kWh

Animal places or ha	Substrate	Slurry per place and year	Slurry/day	Costs of Substrates	Total costs substrates	Mass of substrate	Content of DM	Dry matter	Content of organic DM (oDM)	Specific gas-yield	Gasvolum e	Content of methane	Energy from biomass
		[t or m³]	[m³ ort/d]	[€/ha, m³ 🕢]	[€]	[t]	[%]	[t]	[%]	[l'kg oDM]	[m ₃]	[%]	[kWh]
0	Saws with piglets	4,00	0,0	0	0€	0	4,0	0	85,0	400	0	60,00	0
0	Piglets, Slurry	0,60	0,0	0	0€	0	4,0	0	85,0	400	0	60,00	0
0	Fattening swines	1,50	0,0	0	0€	0	7,5	0	85,0	400	0	60,00	0
0	Laying hens	0,024	0,0	0	0€	0	50,0	0	85,0	650	0	55,00	0
0	Cows	20,00	0,0	0	0€	0	10,0	0	85,0	300	0	55,00	0
37.146	Solids from slurry	1,00	101,8	0	0€	37146	10,0	3.715	90,0	360	1.203.530	55,00	6.619.417
_	Sum / Mean		101,8		0€	37146	10,0	3.715		1	1.203.530		6.619.417

Total Energy					Electrical E	nerg	IJ	Digester				
Yield biogas		18 18	1.203.530	m³/Year	Motor runtime	82 00	hours/a	807	kW/h	Substrate/d	101,8	[m³/d]
Energy gross			6.619.417	kWh	Electric efficiency	35	%	283	kW el.	Retention time	20	[d]
No gas	14	days/year	96,2	% available	Energy supply			2.317.050	kWh	Volumetric loading	4,3	[kg oTS/m³ d]
Energy net		S 02 25 16	6.365.522	kWh	Payment	0,100	R\$	23 1.705	R\$/Year	Volume digester	2.035	m³
Fuel initiates	4	% share	25/1621	k\Mh								

Dr. Karsten Block Heinz-Peter Mang

Total available energy

Transport costs and value of pig slurry

Type of Substrat: Fattening pigs

	Market	Efici-	Substrat /	Standard)	Substrat /	Standard)	Substrat /Standard)		
	value	ency	Content	Value	Content	Value	Content	Value	
Nutrient	R\$/kg	[%]	kg/tDM	R\$	kg/tDM	R\$	kg/tDM	R\$	
Dry Matter [%]	-	-	4,0%	•	7,5%	-	9,0%	-	
Total N / NH4-N	0,50	80%	3,0	1,19	5,6	2,24	6,7	2,69	
P	0,50	100%	2,0	0,99	3,7	1,85	4,4	2,22	
K	0,62	80%	2,0	0,98	3,7	1,84	4,4	2,20	
Mg	0,20	100%	0,5	0,11	1,0	0,20	1,2	0,24	
CaO	0,10	100%	1,1	0,11	2,0	0,20	2,4	0,24	
Price of Nutrient	s	-		3,37		6,33		7,59	
Distribution costs	next to farm	R\$ 2,00		1,37		4,33		5,59	
+ Truck 5 km		R\$ 4,00		-0,63		2,33		3,59	
+ Truck 10 km		R\$ 6,00		-2,63		0,33		1,59	
+ Truck 30 km		R\$ 9,00		-5,63		-2,67		-1,41	

Transport costs and value of compost

Type of Substrat: Compost

	Market	Efici-	Substrat /	Standard)	Substrat /	Standard)	Substrat /Standard)		
Nutrient	value R\$/kg	ency [%]	Content kg/t DM	Value R\$	Content kg/t DM	Value R\$	Content kg/t DM	Value R\$	
Dry Matter [%]	-	-	50,0%	-	60,0%	-	70,0%	-	
Total N / NH4-N	0,50	80%	14,2	5,67	17,0	6,8	19,8	7,93	
Р	0,50	100%	25,8	12,92	31,0	15,50	36,2	18,08	
K	0,62	80%	22,5	11,16	27,0	13,39	31,5	15,62	
Mg	0,20	100%	0,8	0,17	1,0	0,20	1,2	0,23	
CaO	0,10	100%	1,7	0,17	2,0	0,20	2,3	0,23	
Price of Nutrients		-		30,08		36,09		42,11	
Distribution costs	next to farm	R\$ 2,00		28,08		34,09		40,11	
+ Truck 5 km		R\$ 4,00		26,08		32,09		38,11	
+ Truck 10 km		R\$ 6,00		24,08		30,09		36,11	
+ Truck 30 km		R\$ 9,00		21,08		27,09		33,11	

Thank your for your attention

Dr. Karsten Block Heinz-Peter Mang

Photo: www.bioenergie-steinfurt.de