

O&M requirements for a large solar scheme:

The case study of the Solar Powered Water System in Camp 12, Rohingya refugee crisis, Cox's Bazar, Bangladesh

Alessandro Petrone

IOM Head of WASH in Cox's Bazar, Bangladesh

Baudoin Luce

IOM WASH Tech. Officer in Cox's Bazar, Bangladesh

May 6, 2021

Refugee sites in the Cox's Bazar District

- 34 camps in Cox's Bazar district hosting around 855,000 refugees
- Significant influxes have occurred in 1978, 1992, 2012, and in 2016 from Rakhine State, in Myanmar
- The largest influx took place in August 2017 when over 700,000 Rohingya refugees fled across the border into Bangladesh
- Since 2017, over 685,000 refugees are located within the Kutupalong Expansion Site referred to as the Mega Camp
- 170,000 refugees located in camps further south down the Cox's Bazar Peninsula.

Operational presence map

Introduction – Solar Powered Water (SPW) scheme in C12

The System was commissioned in July 2019

This project is a collaboration between IOM, the Japan International Cooperation Agency (JICA) and the Bangladesh Department of Public Health Engineering (DPHE) funded by PRM and the government of Japan.

Camp	Population	Population Coverage:
12	22,976	86% of the camp population
19	6,385	29% of the camp population
Total	29,361	

Introduction – Key design considerations

- 1. Target water supply: 587 m3/day (9 hours of pumping on average per day) and 20 liters/person/day.
- 2. provide a community tap stand within 100m of all beneficiary households, despite the hilly terrain (sphere standards: < 500m)
- 3. Provide enough taps to reach 100 people / tap (sphere standards: 250 ppl/tap).
- 4. To supply water to 53 communal facilities
- 5. Storage capacity: 570 m3 (6 tanks of 95 m3 each Oxfam T95 type)

Water network specifications

- 9.9 km of HDPE pipe installed.
- Total area: 0.88 km2
- 358 taps installed for the community and facilities
- Ratio: 106 ppl/tap

Solar pumping system

- Daily Average: 135 KWh
 - Maximum in Feb : 163 KWh
 - Minimum in Jul: 100 KWh
- Total energy produced = 550 days *
 135 = 74 250 KWh
- Daily output in average: 502m3/day
- Maximum yield of 60m3/hr from 9am to 4pm

SunSwitch setting in PumpScanner

min. 200 W/m²

Daily outpu	t in av	erage	month	1									5	01 m ³
Daily values		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Av.
	-	509	523	535	533	515	470	462	476	480	498	503	511	501
Output [m2]	400 –	· g												
Output [m³]	200 -													
Energy [kWh]		158	162	162	150	131	103	100	110	112	130	144	156	135
Irradiation [kWh/	m²]	5.7	5.9	6.0	5.6	4.8	3.8	3.6	4.0	4.1	4.8	5.2	5.6	4.9
Rainfall [mm]		0.27	0.63	1.5	4.0	8.1	18	22	17	10	6.1	1.6	0.33	7.5
Ambient temp. [°C]		20	23	25	26	27	28	27	27	27	26	24	21	25

O&M: handover and preventive maintenance with contractor.

- Proper handover of system:
 - ✓ System performance tested
 - ✓ Training of staff
 - ✓ User's Manual
- Define clear terms in the agreement with contractor including:
 - ✓ Maintenance schedule for Solar PV system
 - ✓ 2 years warranty for system and 5 years extension for pump, motor and controller.
 - ✓ To plan spare parts for key elements: Solar panels; submersible pump, etc.

O&M: the team

- Designed to minimize operation and maintenance requirements
- Team of 10
 Rohingya volunteers
 living in the camps.
- One IOM engineer to supervise the team and monitor the system

O&M: regular activities

• To carry out regular jar test and to prepare the chlorine solution for the in-line disinfection system.

 To test the free residual chlorine (FRC) on daily basis at tap stands level -(0.3mg/l < FRC < 0.5mg/l)

O&M: regular activities

- Regular repair & maintenance work done by technician & volunteer group. Repair of taps, pipeline, tanks, etc.
- Clean 1 reservoir/ week (each tank cleaned every 6 weeks)

Solar panel O&M:

cleaning: 2 times per week.

Static and dynamic Water level measurement on daily basis

Daily Production and Ground Water Levels

Water level Monitoring:

- Static water level (in green) and dynamic water level (in yellow) measured between August 2019 and January 2021.
- In August 2019; SWL: 8.7m; In August 2020; SWL: 11.4m; Decline SWL = 2.7
 m
- Coherent with groundwater model developed by IOM, GWR and Dhaka University.
- There is no issue linked to this local decline in the camp as the pump is located at 45m.

Life Cycle cost analysis (1)

Cumulative Cost		
Year	Generator	Hybrid (Solar+Generator)
0 (Capital costs)	\$22,615	\$81,785
1	\$46,857	\$83,098
2	\$69,944	\$84,348
3	\$91,933	\$85,538
4	\$115,812	\$86,672
5	\$135,756	\$87,752
6	\$154,751	\$88,780
7	\$172,840	\$93,732
8	\$192,486	\$94,665
9	\$208,894	\$95,553
10	\$224,521	\$96,399
11	\$241,492	\$97,205
12	\$255,665	\$97,972
13	\$275,479	\$98,703
14	\$288,335	\$102,222
15	\$300,579	\$102,885
16	\$313,876	\$103,516
17	\$324,981	\$104,117
18	\$335,558	\$104,690
19	\$345,631	\$105,235
20	\$356,571	\$105,755
21	\$365,707	\$106,249
22	\$374,409	\$108,631
23	\$383,859	\$109,080
24	\$391,751	\$109,507
25	\$402,784	\$109,914

Life cycle cost analysis (2)

The Return on Investment (ROI) of solar system	32 months
Costs saved with solar after 5 years:	\$48,005
Costs saved with solar after 10 years:	\$128,122
Costs saved with solar after 25 years:	<mark>\$292,870</mark>
Water supplied in 25 yrs	4 589 875 m3
Whole life Cost of 1m3 of water with hybrid system	0.26 USD/m3
Whole life Cost of 1m3 of water with generator only	0.31 USD/m3

Conclusion:

The Solar Powered Water System ONLY has the capacity to provide an average of 502m3/day (99% of water distributed)

Return on investment after 32 months and total cost saving after 25yrs of 73%

Proper handover and warranties with the contractor is essential for preventive maintenance and minimize

The O&M is done directly by IOM volunteers trained from the affected population.