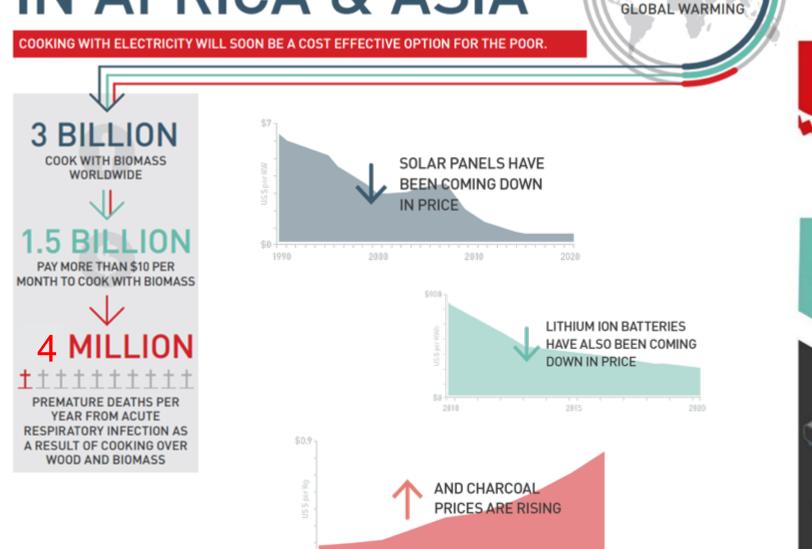
CAPTURING THE EXPERIENCE OF ELECTRIC COOKING WITH ETHNO-ENGINEERING

LCEDN 7TH CONFERENCE | 30TH MAY-1ST JUNE 2018

JON LEARY | GAMOS & LOUGHBOROUGH UNIVERSITY

S. BATCHELOR, E. BROWN, M. LEACH, M. CHEPKEMOI, R. HANLIN, N. NG'OMA, F. MWILA, W. HLAING, S. SAGO, A. MINJA, K. CHEPKURUI, K.S. NG, X. CHEN, R. KHAN


FUNDERS & PARTNERS

OUTLINE

- eCook, the ethno-engineering approach & why we need think INSIDE the box!
- The cooking diaries methodology
- Key learning points from:
 - Kenya, Zambia, Myanmar & Tanzania

COOKING WITH ELECTRICITY

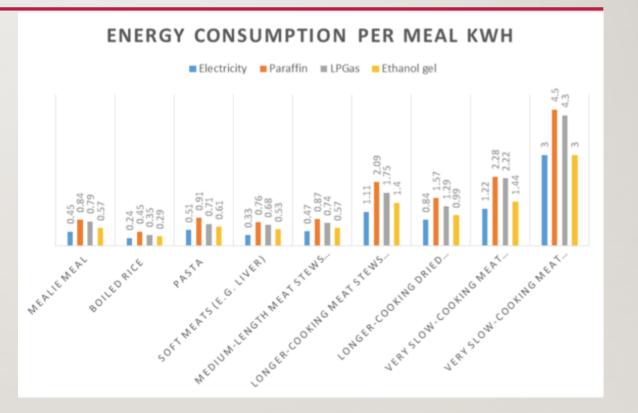
EMISSIONS FROM

BIOMASS ACCOUNT

FOR 5% OF TOTAL

2012

ACIOAL


DCLOAD

ETHNO-ENGINEERING

- Ethnography + engineering = ethno-engineering
 - Ethnography offers valuable insight into culturally distinctive processes of domestication of new technologies
 - Engineering reveals how they physically function
- Integrating the 2 disciplinary approaches can offer a more holistic & culturally informed understanding of technical solutions to social problems resulting in more effective interventions to alleviate poverty (Nye, 1990)
- Understanding and applying culturaly distinctive skills and practices in a participatory development process, carefully observing the resulting changes in community practices (Bastholm & Henning, 2014; Dracklé & W. Krauss, 2011)

COWAN (2008)

- Identification of urban energy best practices
- Imizamo Yethu informal settlement in South Africa
- "...at the present time there is a clear overall advantage in using electricity, where available. It is cheaper to use, safer and more controllable – from a householder's perspective, at current energy prices."
- "Imizamo Yethu Energy Cookbook"

NERINI, RAY & BOULKAID (2017)

Levelised Cost of Cooking a Meal (LCCM)

$$LCCM_{t} = LCCM_{fuel} + LCCM_{stove}$$
$$= \frac{F_{ct} * E_{m}}{\eta_{s}} + \frac{\sum_{t=1}^{n} \frac{I_{t} + O\&M_{t}}{(1+r)^{t}}}{\sum_{t=1}^{n} \frac{Ml_{t}}{(1+r)^{t}}}$$

where:

- F_{ct} is the fuel cost in USD/MJ at the time t.
- E_m the final energy required for cooking a meal in MJ.
- η_s the stove efficiency [%].
- I_t is the stove investment cost.
- O&M_t are the stove operation and maintenance costs.
- Ml₁ are the amount of meals cooked in the time unit (1 year).
- *n* is the stove lifetime [years].
- r is the discount rate [%].

NERINI, RAY & BOULKAID (2017)

 Nyeri County, Kenya

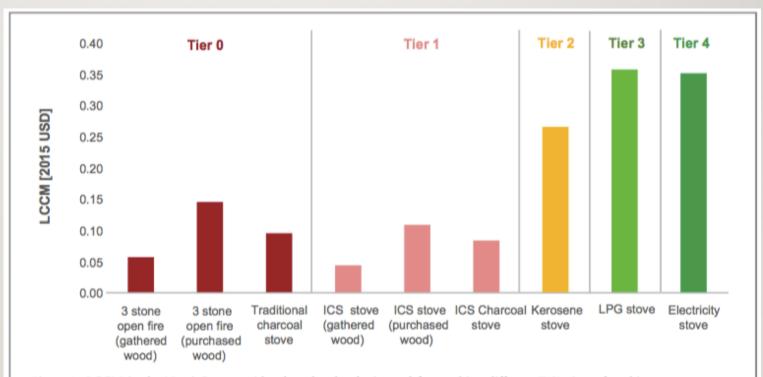


Figure 3. LCCM in the Nyeri County with selected technologies and for reaching different IWA tiers of cooking energy access.

NERINI, RAY & BOULKAID (2017)

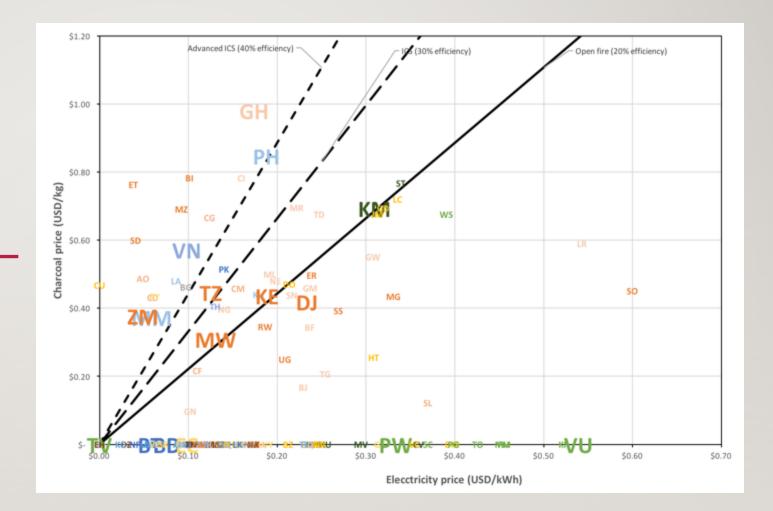

- Key variables for electric cooking:
 - Unit cost of electricity
 - 0.25USD/kWh
 - Efficiency of stove
 - Heat transfer into the pot

 Table A. 1 Stove model parameters, elaboration of the authors from field observation and (Kshirsagar and Kalamkar 2014)(Jetter et al 2012) (MacCarty et al 2010)(Global Alliance for Clean Cookstoves 2016)

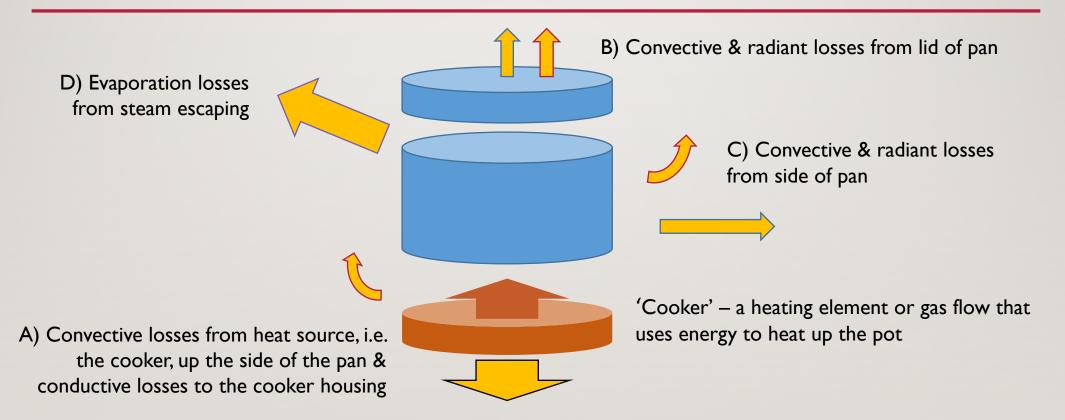
	Capital cost (Kenyan shillings)	Capital cost (USD)	Efficiency (%)	Stove Lifetime (years)
3 stones open fire	-	-	14	-
Traditional charcoal stove (Jiko)	300	3	26	4
ICS firewood stove	1000	11	19	6
ICS charcoal stove	1000	11	30	6
Kerosene Stove	550	6	37	5
LPG Stove	1800	20	53	5
Electrical stove	4000	44	70	5

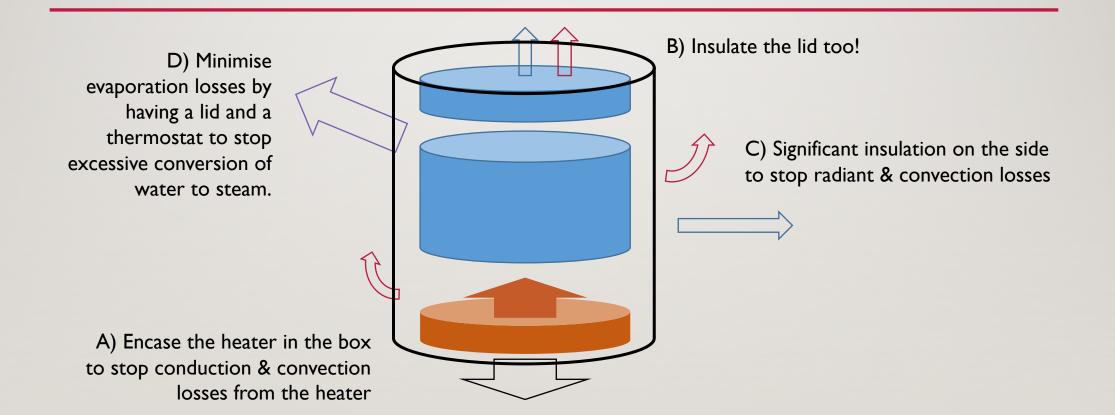
GLOBAL MARKET ASSESSMENT

- Variable efficiency for ICS
- Single 70% value used for electric hotplate
- Urban charcoal prices

ENERGY EFFICIENT APPLIANCES

LED VS. INCANDESCENT 90% REDUCTION

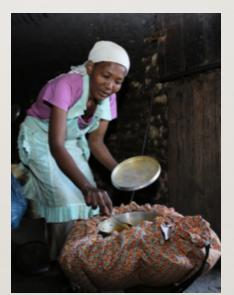




LCEDN 7th Conference | 30 May-I June 2018 PV-eCook.org JonKLeary@gmail.com

HEAT TRANSFER OUT OF THE POT IS AS IMPORTANT AS HEAT TRANSFER INTO IT!

THINK INSIDE THE BOX



BEHAVIOURAL CHANGE

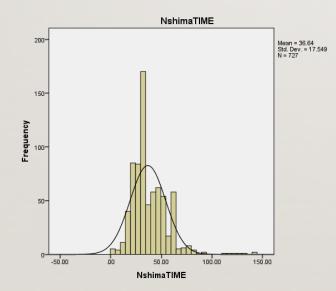
SOLAR COOKER WONDERBAG

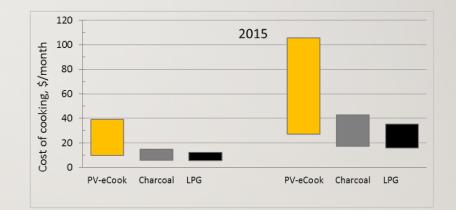
- Must cook outside
- Must keep dish aligned with sun
- Fuel still required for evening/morning & cloudy days

- Cook anywhere
- Fuel still required for initial heating
- No frying

THE COOKING DIARIES METHODOLOGY

AIMS


- To evaluate the trade-offs between energy efficiency and behavioural change
- To capture the user experience of transitioning to electricity for cooking
 - To assess the compatibility of different electric cooking appliances with culturally distinct cooking practices
- To quantify the amount of electricity required to cook
 - To characterise the range of load profiles for future eCook systems
 - To compare the relative costs of cooking on electricity and other key fuels


DATA COLLECTION

- 20 HHs in each country
- 6 weeks of data collection
 - 2 weeks baseline
 - 4 weeks transitioning to electricity
- Recording what is cooked, how it is cooked and how much energy it uses
- Meal-level resolution
- Registration & exit surveys to capture user experiences
 - eCooking challenges

DATA ANALYSIS

- Excel -> SPSS
 - Economic modelling (Leach & Oduro, 2015)
 - eCookBook

KEY LEARNING POINTS FROM KENYA

KEY LEARNING POINTS FROM KENYA

- Simple hotplates are not competitive in contexts where gas is cheap and widely available
 - No participants still regularly using hotplates after study
- Insulated storage containers and uninsulated stove-top pressure cookers widely available

Not a fan of gas? Or just looking for something in case you run out of gas?

WHITE, SPIRAL PLATE COOKER- RM/250

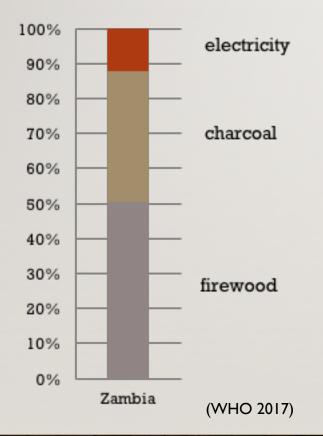
\.... ↓ Available

For quick boiling

- 2 level temperature setting from simmer to boil
- Thermal fuse
- Hinged element for easy cleaning
- Power: 500W+900W

Brand: Ramtons

KSh 3,450


THE MULTI-COOKER

KEY LEARNING POINTS FROM ZAMBIA

CHARCOAL & ELECTRICITY

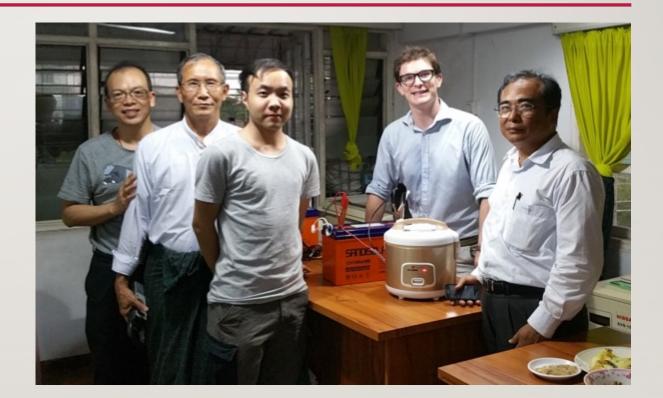
- 37% of Zambians (6 million) cook primarily on charcoal
 - Kerosene & LPG use minimal
- 5 million Zambians are grid connected (World Bank 2017)
- 2 million Zambians already cook with grid electricity as their primary fuel (WHO 2017)
 - Electricity is the aspirational fuel for most people
- Load shedding dramatically increased charcoal use (Dlamini et al. 2016)

KEY LEARNING POINTS FROM ZAMBIA

- Multi-cooker & hotplate for each household
- Energy meters with a live readout can empower users to adapt their cooking practices around energy consumption

THE BEAN BOILING CHALLENGE

- I cup of beans, including sauce, with the least energy possible
- Energy saving techniques employed included:
 - Soaking the beans overnight (in salty water)
 - Pressure cooking beans with the sauces at the start (tomatoes, onions, chilies, spices, salt and oil)
 - Choosing quicker cooking varieties of beans
 - Avoid depressurizing the pressure cooker while cooking
 - Starting with hot water


	RANK	UNITS		
		(k₩h)		
		0.094		
	2	0.140		
	2 3	0.143		
	4	0.147		
	5	0.166		
e	6	0.175		
-	7	0.185		
	8	0.190		
	9	0.237		
	10	0.243		
	11	0.265		
	12	0.268		
	13	0.380		
	14	0.409		
	15	0.412		
	16	1.001		
ng	17	1.12		
·0	8	2.0		
	19	Unavailable		
	20	Unavailable		

KEY LEARNING POINTS FROM MYANMAR

THE RICE COOKER

- Induction stoves can save energy, but not as much as insulated appliances
 - Even 100% efficient heat transfer into the pot is no use if all the heat escapes!
- Rice cookers don't just cook rice
- DC rice cookers are already being mass-produced in China

RICE-eCOOK

		PV-eCook	Grid- eCook
	Battery	0.26	kWh
Key equipment specification	PV	0.08kW	-
	Controller	5.3A	-
	Capital cost	\$116	\$58
eCook monthly cost	3yr repayment	\$4/month	\$2/month
	5 yr repayment	\$3/month	\$1/month
	Utility (20yr)	\$2/month	\$1/month

- Entry level system
- Lowest possible cost

THE THERMO-POT

- Insulated pots traditionally used to keep tea warm
- Thermo-pot is a modern evolution
 - Kettle plus thermos flask
 - Reduces energy usage during initial cooking/heating & for reheating
 - Charge controller could switch it on when batteries fully charged

KEY LEARNING POINTS FROM TANZANIA

POSITIVE RESPONSE TO ALL INSULATED APPLIANCES

- It is possible to cook ugali in a rice cooker
 - Green light means stir, instead of ready
- BUT hotplates still heavily used as only 2 appliances per household
- Behavioral change still challenging for initial adoption of multi-cookers, however:
 - Strong motivation for sustained use beyond energy saving, as pressure cookers offer a quicker & more convenient cooking experience

KEY BEHAVIOURAL CHANGE BARRIERS

KEY DRIVERS FOR SUSTAINED ADOPTION

ENERGY SAVING POTENTIAL

Energy efficiency

CONCLUSION

- Think INSIDE the box!
 - The efficiency of heat transfer out of the pot is as important as the efficiency of heat transfer into it
- The multi-cooker could well be the 'LED of solar electric cooking',
 - **BUT**... only when combined with energy efficient cooking practices
- Electrical appliances & training on energy efficient cooking practices are much cheaper than batteries

PV-ECOOK.ORG

STAY TUNED FOR RESULTS OF THE QUANTITAVE ANALYSIS

REFERENCES

- Nerini, F.F., Ray, C. & Boulkaid, Y., 2017. The cost of cooking a meal. the case of Nyeri County, Kenya. Environmental Research Letters, 12(6).
- Cowan, B., 2008. Identification and demonstration of selected energy best practices for low-income urban communities in South Africa, Alleviation of Poverty through the Provision of Local Energy Services (APPLES), Energy Research Centre, University of Cape Town.
- Solar cooker image http://www.solarcooker-at-cantinawest.com/expensive-solar-cookers.html
- Batchelor S, 2013, Is it time for Solar electric cooking for Africa?, Gamos Concept Note, May 2013, Reading, UK; 2013
- Batchelor S, 2015a, Africa cooking with electricity (ACE), Gamos Working Paper (Draft as at August 2015). Reading, UK; 2015
- Batchelor S, 2015b, Solar electric cooking in Africa in 2020, A synthesis of the possibilities. Evidence on Demand, UK;.v + 44 pp. [DOI: http://dx.doi.org/10.12774/eod_cr.december2015.batchelors]
- D. E. Nye, Electrifying America : social meanings of a new technology, 1880-1940 / | National Library of Australia. Cambridge, Mass.: MIT Press, 1990.
- C. Bastholm and A. Henning, "The use of three perspectives to make energy implementation studies more culturally informed," Energy. Sustain. Soc., vol. 4, no. 1, p. 3, Feb. 2014.
- D. Dracklé and W. Krauss, "Ethnographies of Wind and Power," Anthropol. News, vol. 52, no. 5, pp. 9–9, May 2011.
- Leach, M. & Oduro, R., 2015. Preliminary design and analysis of a proposed solar and battery electric cooking concept: costs and pricing,
- WHO, 2017. Household energy database. WHO. Available at: http://www.who.int/indoorair/health_impacts/he_database/en/ [Accessed August 18, 2017]