

National Energy Efficiency Action Plan for Egypt

Coordinating Effort 14 & 15 April 2016, Ain Essokhna

This project is funded by the European Union

Support Programme for Cogeneration: Tunisian Experience:

Kawther LIHIDHEB Key Expert.MED ENEC

www.med-enec.eu

WHAT IS COGENERATION?

This project is funded by the European Union

PRODUCTION OF ELECTRICAL AND THERMAL POWER:

✓ At the same time

✓ In the same power machine.

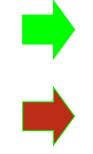
Conventional energy

Natural Gas

Heat: ✓ Steam ✓ Hot oil. ✓ Hot water

ECOFYS

ADEMI



COGENERATION

Electricity Heat: ✓ Steam ✓ Hot oil. ✓ Hot water

100%

Why Cogeneration is profitable for the country?

This project is funded by the European Union

Conventional energy

FC

tienal Services

Primary Energy Factory Transformers Mains Power plant (Primary Fuel) Total Efficiency: < 50% based on primary energy Consumption

COGENERATION Electricity Natural Gas (44%) Heat: ✓ Steam ✓ Hot oil. ✓ Hot water **Gas Engine**

Efficiency: > 70% based on primary energy Consumption

sectainable chargy for everyone

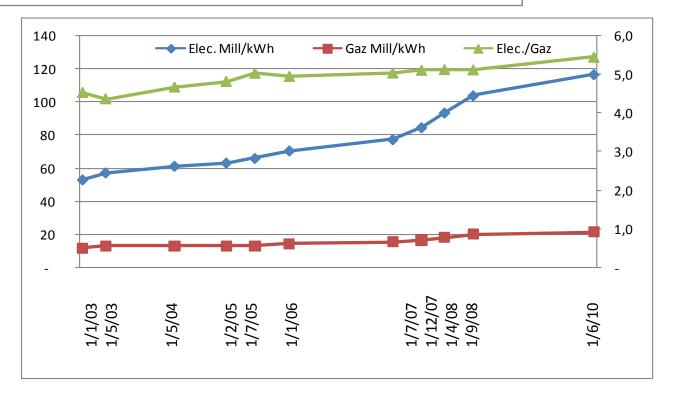
This project is funded by the European Union

Cogeneration

=

Substitution of electricity by Natural gas

ADEMI



Cogeneration: Economic opportunity for the company

This project is funded by the European Union

•National Price of Electricity VS Naturel Gas

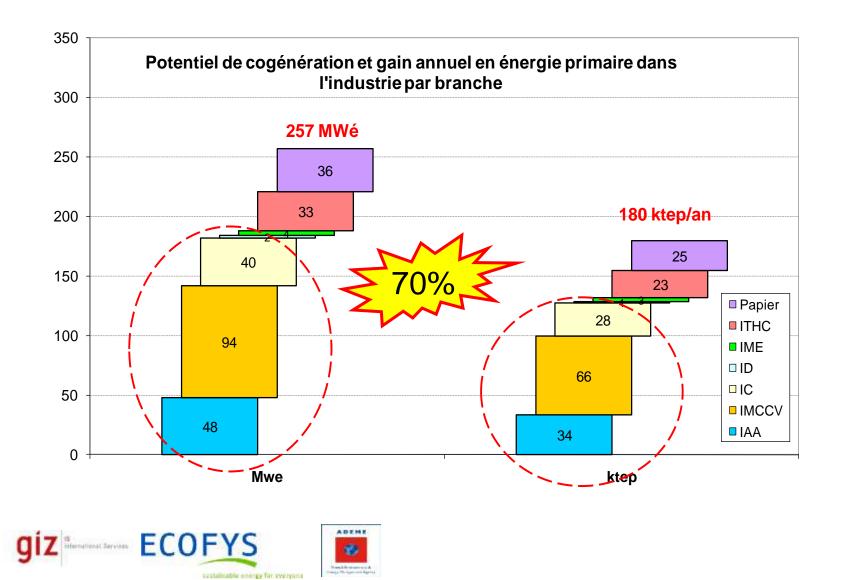
ADEME

Why Cogeneration is profitable for the company?

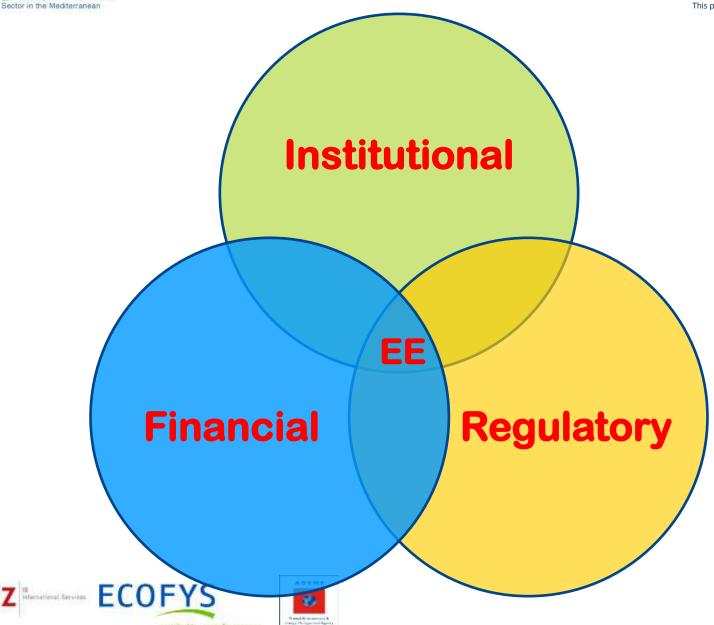
This project is funded by the European Union

Paramètre	Unité	Sans cogénération	Avec Cogénération
Puissance Cogénérateur	onnee	Suits cogeneration	1 000
Rendement électrique cogénérateur			40%
Puissance moyenne appelée	kW	1 000	1 000
Nombre heures de marche	h	7 000	7 000
Consommation	kWh	7 000 000	7 000 000
Coût	TND/kWh	0,12	0,12
Facture électricité		840 000	0,12
Energie thermique			
Rendement global cogénérateur	%	80	%
Puissance thermique récupérée	kW		1 000
Chaleur récupérée	kWh		7 000 000
Puissance moyenne	kWh PCI	2 000	7 000 000
Nombre heures de marche	h	7 000	7 000
Consommation	kWh	14 000 000	7 000 000
Coût	TND/kWh	0,023	0,023
Coût énergie thermique	TND	322 000	161 000
Consommation cogénérateur	kWh		17500000
Consommation cogénérateur	TND/an		402500
Facture Energie	TND/an	1 162 000	563 500
Economie	TND/an		598 500
Réduction facture	%	52%	
Maintenance	TND/h		20
Maintenance	TND/an		140 000
Economie nette	TND/an		458 500
Réduction Nette	%	39%	
Investissement	TND		2 000 000
Subvention FNME	TND		400 000
Investissement net	TND		1 600 000
Temps de retour	Année	3,5	

40% Reduction of the Energy Bill



This project is funded by the European Union



Energy Efficiency policy in Tunisia: Varied & Complementary EE policy tools

Energy Efficiency in the Construct

This project is funded by the European Union

EE Policy for Cogeneration in Tunisia Institutional Instrument

This project is funded by the European Union

- National Agency for Energy Conservation **ANME** created in 1985 and enforced in 2004.
- Creation of **4 Task forces** leaded by ANME in 2005:
 - + Task force for large industrial energy users:

To assist large industrial energy users in their energy conservation efforts

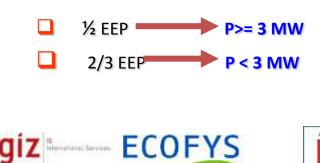
+ Task force cogeneration:

To support the establishment of the required legal framework to achieve the cogeneration objectives

To work with industrial companies to assist in the development and implementation of projects

+ Task force on natural gas:

To encourage the expansion of gas use in industry & Commercial sector


EE Policy for Cogeneration in Tunisia Regulatory Tools

This project is funded by the European Union

Decree 2009-3377 of 2 november 2009

- Defines the framework for the construction and operation of cogeneration plants.
- Defines the technical criteria for a cogeneration plant to be considered energy efficient.
 - Annual overall efficiency >= 0,6
 - Heat recovery ratio > 0,5.
- Defines the flow conditions of electrical power excess to electricity utility STEG

EE Policy for Cogeneration in Tunisia Regulatory Tools

This project is funded by the European Union

Decree 2009-3377 du 2 novembre 2009

- Any new cogeneration project should conduct and submit a feasibility study to the National Agency for Energy Conservation (ANME)..
 - Certifies that the cogeneration project is Energy Efficient
 - The certificate is delivered after the approval of a national cogeneration commission
 - The certificate issued gives entitlement to advantages granted to cogeneration (incentive purchase price for the excess of electricity, Prime à l'investissement...)

EE Policy for Cogeneration in Tunisia Regulatory Tools

This project is funded by the European Union

Decree 24 December 2007 setting the technical requirements for connection of cogeneration systems to the electrical grid.

Voltage Requirements

- + The voltage variation shall not exceed 7% of the nominal voltage
- + Low total harmonic distortion according to the standards and Norms
- + Over voltage protection (asynchronous generator with capacitor bank)
- Voltage regulation of a synchronous generator

•Security System Requirements

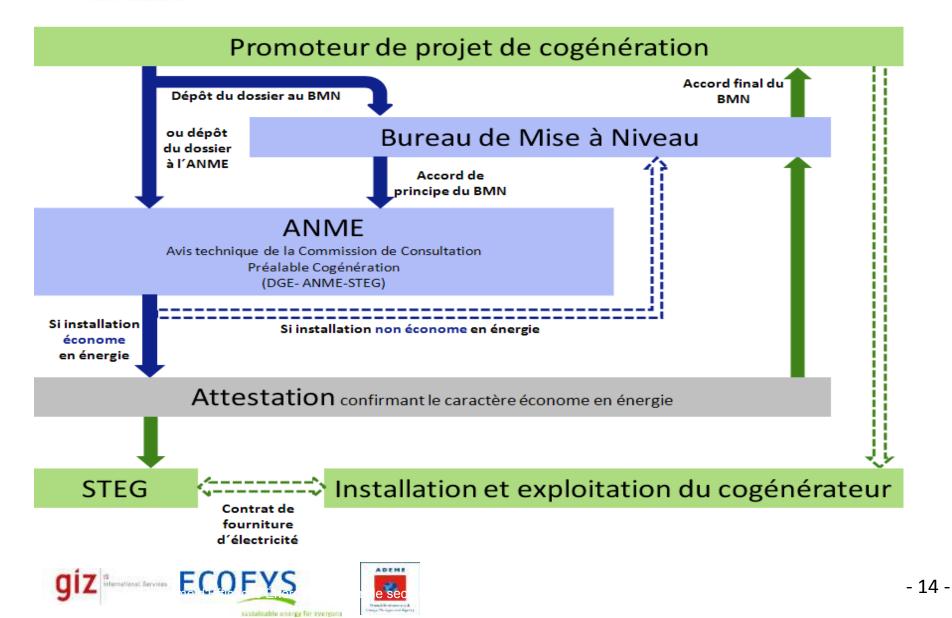
+ Disconnect quickly and safely from the grid when a disturbance is detected on the grid.

EE Policy for Cogeneration in Tunisia Incentive Measures

This project is funded by the European Union

- Specific Framework for the promotion of cogeneration
 - + 20% subsidy for cogeneration investment with a maximum of 500.000 dinars per project from the sustainable Fund FNME.
 - + **Obligation** for the utility company STEG to buy the excess of electricity produced by cogeneration plant.
 - + Third part access to STEG transmission Network.
 - + An incentive purchase price for the excess of electricity sold to the grid

Prix Jour : 0,2401 x Prix Gaz/tep + 16 (millimes)
Prix Pointe : 0,3110 x Prix Gaz/tep + 60 (millimes)
Prix Soir : 0,3039 x Prix Gaz/tep + 40 (millimes)
Prix Nuit : 0,2179 x Prix Gaz/tep (millimes)



EE Policy for Cogeneration in Tunisia Procedure Overview

This project is funded by the European Union

EE Policy for Cogeneration in Tunisia Financial Tools

This project is funded by the European Union

- Credit line World Bank: 40 MUS\$
 - A long terme loan from the world bank with the guarantee from the Government of Tunisia
 - > 2 banks partners: Amen Bank, Banque de l'Habitat
 - Cogeneration and Energy Efficiency in industries

Credit Line Environment AFD: 40 M€

- A loan from AFD, bonifie par l'UE
- > 3 banks partners: **BIAT**, **UBCI**, **BT**
- Cogeneration, Energy Efficiency and Renewable Energies

EE Policy for Cogeneration in Tunisia Financial Tools

This project is funded by the European Union

Technical and financial assistance to project developers

> The **ANME** in the center of the dispositif

Providing technical assistance to the commercial banks in the area of EE

Providing support to project developers.

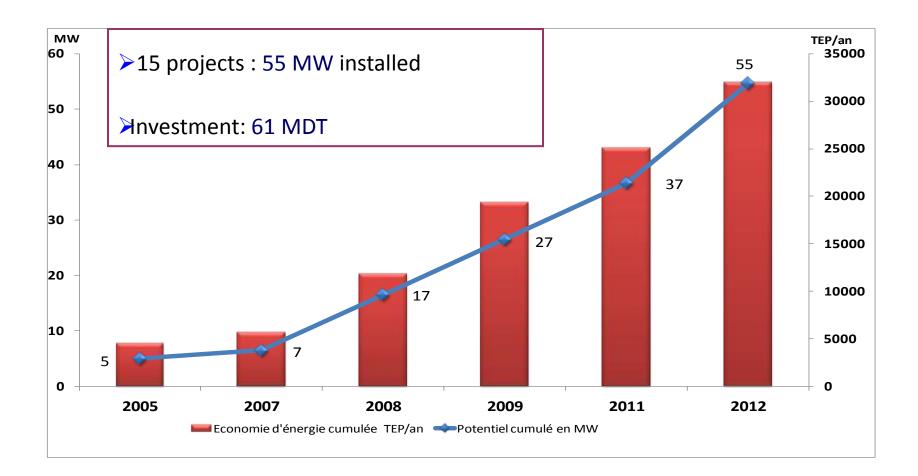
EE Policy for Cogeneration in Tunisia Supporting Tools

This project is funded by the European Union

Technical support to project developers

- Conducting prefaisability studies to the targeted customers in industrial and commercial sector.
- Conducting (20) detailed faisability studies in targeted industries Food ,Ceramic & Chemical .
- Supporting the project developers in preparing the Businee plan and in Financing their investment project.

Enhancing the capacities of different stakeholders


Training in conducting detailed faisability studies.

Training in Implementing and operating cogeneration plant.

MED-ENEC Energy Efficiency in the Construction Sector in the Mediterranean Sector in the Mediterranean Sector in the Mediterranean

This project is funded by the European Union

ADEME

Achivements of the Cogeneration Programme

This project is funded by the European Union

Applications in Chemical Sector

SOTIPAPIER 2007

- Paper production
- Gas turbine7 MW
- 12 to 20 tonnes of steam
- 2 gas Turbines of 5 MW each
- Connected to the grid STEG

TEC T'PAP 2009

- Paper production
- Gas turbine 4.7 MW electrical
- Steam recovery 13 tonnes
- Connected to the grid STEG

Achivements of the Cogeneration

Programme

This project is funded by the European Union

Applications in Ceramic Sector

CARTHAGO CERAMIC 2002

- Creamic
- Gas Turbine 5,5 MW
- Connected to the grid STEG
- Using exhausted Gas in the atomizers

□ CARTHAGO GRES 2009

- Ceramic
- Gas turbine 4.7 MW
- Using exhausted Gas in the atomizers
- Récupération de la vapeur pour une usine mitoyenne
- Connected to the grid STEG

alleral Services ECOFYS

Achivements of the Cogeneration

Programme

This project is funded by the European Union

Applications in Brick Sector

Briqueterie Bir M'Cherga - BBM 2011

- Produits rouges
- Gas turbine 4,47 MW
- Connected to the grid STEG
- Using exhausted gas in

Achivements of the Cogeneration

Programme

This project is funded by the European Union

Applications in Food Sector

Nejma Huiles SA 2011

- Refinery and Conditioning vegetal oil
- Gas Engine 1,13 Mw
- Connected to the grid STEG
- Using exhausted gas for producing steam.
- Hot water recovery system

Applications in Buildings

INTERNATIONAL AIRPORT ENFIDHA 2011

- Moteurs à gaz 4.07 MW électrique
- Trigeneration
- Using exhausted gas for producing hot water and cooling
- Connected to the grid STEG

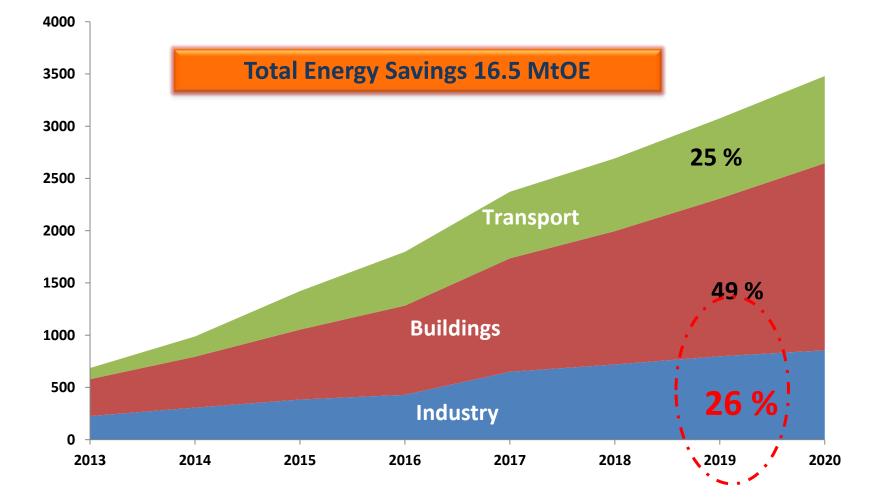
The programme has operated a real

Pipe Line of the cogeneration project-2016

This project is funded by the European Union

Objectif : 141 MW Capacity Installed in 2016

	Number of installations	Status	Capacity (MW)
	22	Cogeneration facilities operational or significantly advanced in the implementation	81
	5	Projects under construction	15
	18	Projects approved by the national cogeneration committe	52
	6	Faisability study	21
	51	TOTAL	141

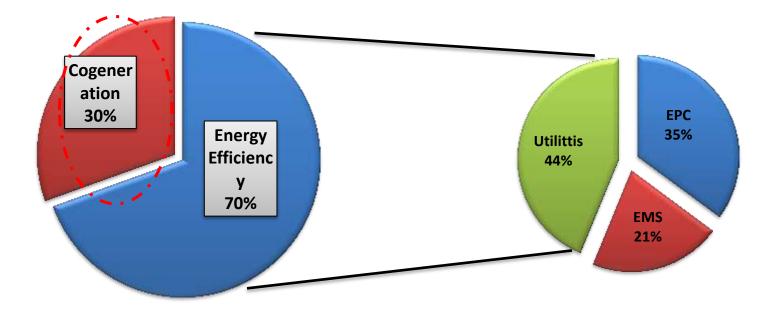


Energy Impact- NEEAP-2013-2020

This project is funded by the European Union

ADEME

2



Energy Impact- NEEAP-2013-2020

This project is funded by the European Union

Energy Savings Industry 2013-2020 ---4.4 MtOE

EE is a key for a sustainable economic development in the region with a big market that is growing . . . but even more needs to be done to scale up....

- A comprehensive policy package is required to address market failures
- Financial support and Innovative Mechanism are needed for scaling up EE market
- Increase awareness of actors at all levels & build the capacities of all stakeholders
- Promote Public-Private Partnership strategy and actions to promote EE (Super ESCOs, ESCOs)

n Unior

This project is funded by the European Union

THANK YOU FOR YOUR ATTENTION

