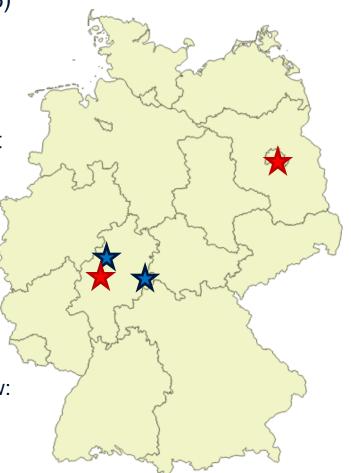
Comparison of Off-Grid Electrification versus Grid Extension: Influencing Parameters and The Role of Renewable Energies from a Geographic Point of View

Catherina Cader November 21st, 2014 Bonn, Jahrestagung 2014 "EnergieGeographien in internationaler Perspektive"



- Catherina Cader, born in Fulda, Germany (1986)
- Bachelor *Environmental Management* Justus Liebig Universität Gießen (2007-2010)
- Masters Physical Geography: Systems, Interactions and Processes Philipps Universität Marburg, Exchange semester University of Pécs, Hungary (2010-2012)
- Researcher in the Off-Grid Team, Reiner Lemoine Institut, Berlin (from 2012)
- Scholarship, PhD candidate (from 2014): Comparison of Off-Grid Electrification versus Grid Extension: Influencing Parameters and the Role of Renewable Energies from a Geographic Point of View: Uni Gießen, Supervisors: Prof. Dittmann, Prof. Winker
- Field research Cameroon (01/2014)

Research Groups

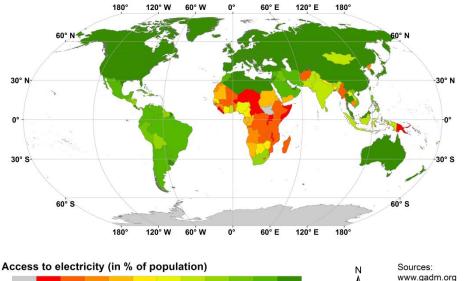
- Off-grid energy systems
- Integrated energy systems
 - Optimization of energy systems
 - Analysis of energy transition scenarios
- E-mobility
 - Integration of renewable energies into e-mobility concepts
- Renewable energy technology
 - Small wind power

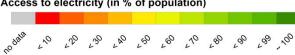
Reiner Lemoine Founder of the Reiner Lemoine Foundation

Managing Director: Dr. Claus Beneking

Scientific research for an energy transition towards 100 % renewable energies.

Main focus areas


- Simulation of Hybrid Mini-Grids
- GIS-based Analyses
- Evaluation of Socio-Economic Context
- Market Potential Assessment / Feasibility Studies
- Global Rankings of Attractiveness for Renewable Energies
- Cooperation with Private and Public Partners



- Introduction
- Objective
- Methods

REINER LEMOINE INSTITUT

No or insufficient access to electricity in many remote

•

JUSTUS-LIEBIG-

UNIVERSITÄT

GIESSEN

 High costs for diesel fuel and kerosene and environmental impact

rural region

	Rural	Urban	Total Shar	e of population
Developing countries	1,081	184	1,265	24%
Africa	475	114	590	57%
Developing Asia	556	62	628	18%
Latin America	23	6	29	6%
Middle East	16	2	18	9%
World	1,083	184	1,267	19%

UNDP 2009

IEA 2011

Source: Number of people without access to electricity by region (million). World Energy Outlook 2012, International Energy Agency, 2012.

Comparison of Off-Grid Electrification versus Grid Extension catherina.cader@rl-institut.de

- Insufficient power generation facilities in many regions
- Expensive power generation costs (high levelized costs of electricity)
- Outdated infrastructure
- Unreliable grid electricity access
- Dependence on fossil fuel imports

Mobile diesel power generation plant – Siquijor Island, Philippines (Bertheau, 2013).

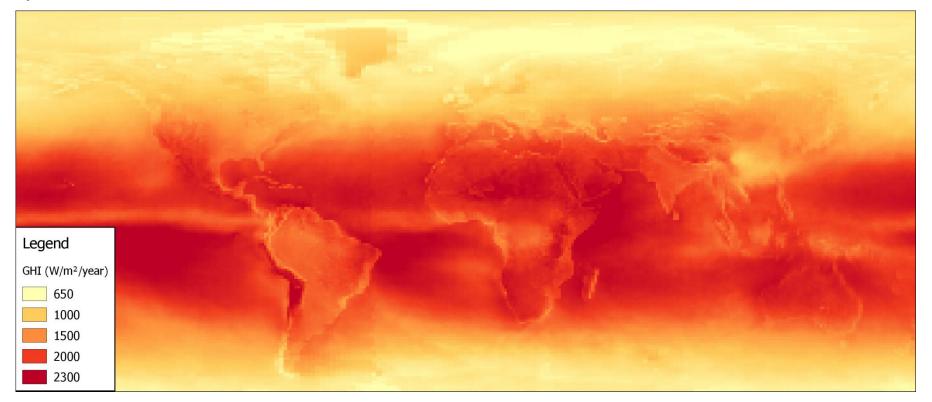
Energy kiosk – Extreme Nord, Cameroon (Cader, 2014).

Small diesel generator to power little energy kiosks – Extreme Nord, Cameroon (Cader, 2014).

Low electricity access, high costs and outdated technology is prevailing

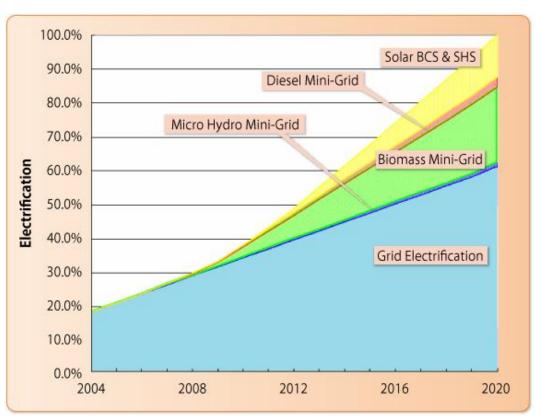
- Increasing demand for electricity in the coming years, especially in developing countries
 - → Shortage of fossil resources
 - \rightarrow Price increase of fossil resources
 - \rightarrow Pollution and CO₂ emissions
- Access to electricity is crucial for
 - →Education
 - \rightarrow Health
 - → Economic development

PV-Batterie SHS – Extreme Nord, Cameroon (Cader, 2014).


PV moduels – Extreme Nord, Cameroon (Cader, 2014).

High potential of decentralized renewable energy sources Wind – Solar – Hydro – Biomass

The sum of the global irradiance can be utilized for a first estimation of the PV potential.



Source: DLR Deutsches Zentrum für Luft- und Raumfahrt. Data provided by NASA, 2005.

- Where is an unmet demand for electricity?
- Where are renewable resources?
- Where are expensive fossil fuels used for electricity generation?
- Which regions are viable for a decentralized electricity generation compared to central generation with transmission and distribution lines?
- Where does sufficient energy infrastructure exist?

Village electrification plan for Cambodia. Source: http://www.eria.org/events/5.%20Mr.Toch%20Sovanna%20-%20The%20Potential%20of%20Renewable%20Energy%20in%20Cambodia.pdf

Off-Grid Electrification Today and in Future - Influencing Parameters and The Role of Renewable Energies From a Geographic Point of View

 \rightarrow Where and how can off-grid regions be supplied with electricity by small-scale hybrid systems with renewable energies?

 \rightarrow What are the advantages and disadvantages of decentralized power supply compared with a central electricity generation?

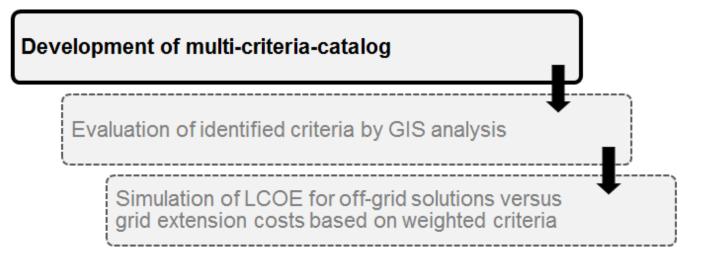
 \rightarrow Where are decentralized solutions still viable with a progression of the future grid development and why? (economically, politically, socially)

Decision support tool for the design of development plans for electricity :

- → Which regions should be supplied decentrally, where is grid extension the better option
 - Through economical benefits
 - Through a simpler realizability
 - Through technical feasibility
- \rightarrow How important are renewable energies in this regard?

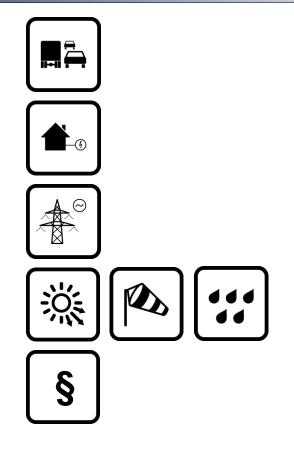
Definition of influencing parameters:

	Advantage +	Disadvantage -
Grid extension	?	?
Decentral off-grid/ mini-grid solution	?	?



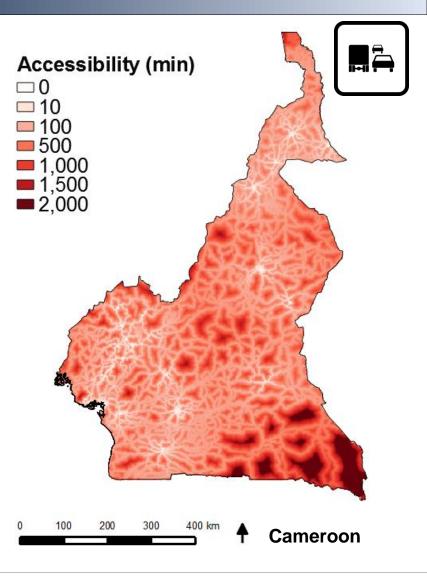
Definition of influencing parameters:

	Advantage +	Disadvantage -
Grid extension	 Cheap central electricity generation through economies of scale Central organization Many people can profit at the same time 	 Long, complex planning processes (where exactely will the grid be planned/extended?) High initial investments Limited influence of single stakeholder Connection fees
Decentral off-grid/ mini-grid solution	 Easy planning and smaller initial investment needed Faster realization of projects Resources can be used locally Regional independence Also very remote locations can profit 	 Many successful independent projects are needed LCOE can vary significantly Dependence on local resources Large scale projects are often subsidized, small projects are not Comparably high costs (LCOE and upfront costs)


Multi-criteria catalog is developed to distinguish advantages and disadvantages of on- and off-grid electricity supply.

15 Comparison of Off-Grid Electrification versus Grid Extension catherina.cader@rl-institut.de

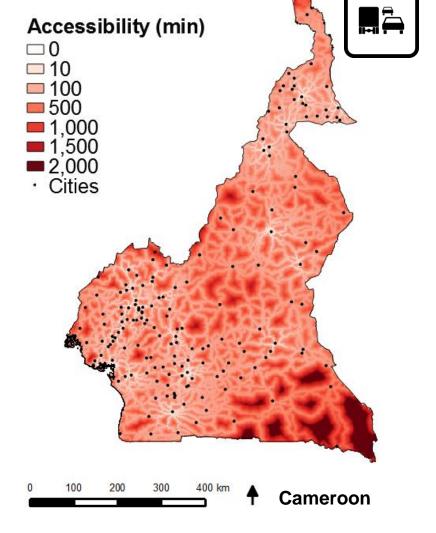
- Remoteness
- Electricity Demand
- Existing Electricity Generation and Transmission Schemes
- Natural Resource Assessment
- Non-Spatial Parameters



⇒ Examples of the most important spatial criteria are mapped along the example of Cameroon.

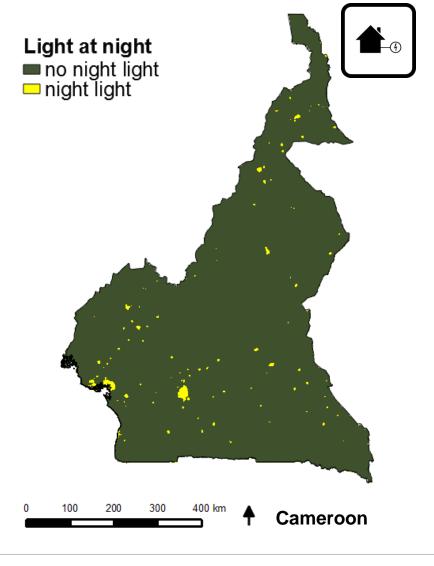
- Travel time to the next city with more than 50,000 inhabitants
- Distribution of towns and villages
- Urban / rural area distinction

- Nelson, A., Estimated travel time to the nearest city of 50,000 or more people in year 2000, Global Environment Monitoring Unit - Joint Research Centre of the European Commission, Ispra, Italy, 2008.
- Center for International Earth Science Information Network -CIESIN - Columbia University, International Food Policy Research Institute - IFPRI, The World Bank, and Centro Internacional de Agricultura Tropical - CIAT. 2011. Global Rural-Urban Mapping Project, Version 1 (GRUMPv1): Settlement Points.



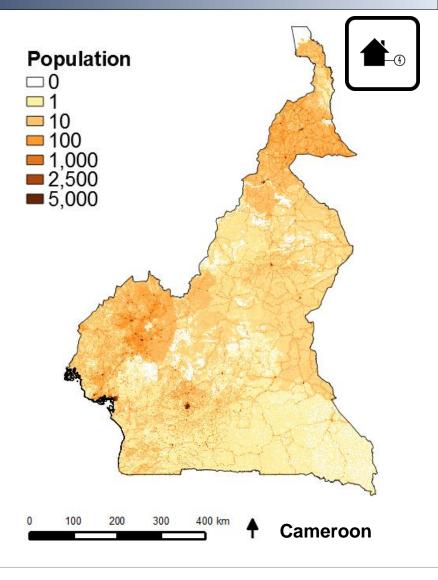
- Travel time to the next city with more than 50,000 inhabitants
- Distribution of towns and villages
- Urban / rural area distinction

- Nelson, A., Estimated travel time to the nearest city of 50,000 or more people in year 2000, Global Environment Monitoring Unit - Joint Research Centre of the European Commission, Ispra, Italy, 2008.
- Center for International Earth Science Information Network -CIESIN - Columbia University, International Food Policy Research Institute - IFPRI, The World Bank, and Centro Internacional de Agricultura Tropical - CIAT. 2011. Global Rural-Urban Mapping Project, Version 1 (GRUMPv1): Settlement Points.



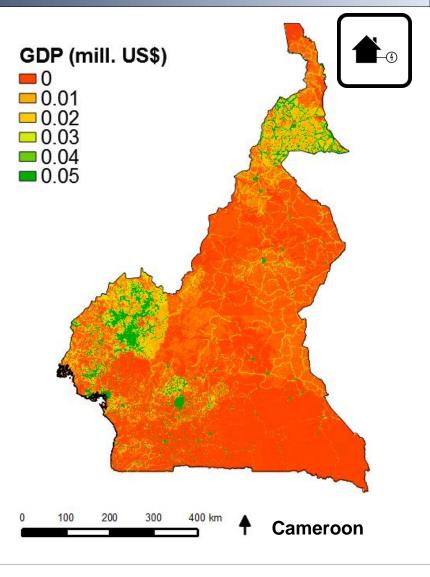
- Electricity access
- Population density
- GDP
- Tourism/industry

- Night Light Imagery, version 4 DMSP-OLS Night Lights Time Series, NOAA National Geophysical Data Center, US Air Force Weather Agency, Boulder, Colorado. LandScan 2011[™] High Resolution global Population Data Set, copyright UT-Battelle, LLC, operator of Oak Ridge National Laboratory under Contract No. DE-AC05-00OR22725 with the United States Department of Energy.
- Nelson, A., *Estimated travel time to the nearest city of 50,000 or more people in year 2000*, Global Environment Monitoring Unit Joint Research Centre of the European Commission, Ispra, Italy, 2008.
- Ghosh, T., Powell, R. L., Elvidge, C. D., Baugh, K. E., Sutton, P. C., Anderson, S., Shedding Light on the Global Distribution of Economic Activity. The Open Geography Journal, 3, 148 161, 2010.



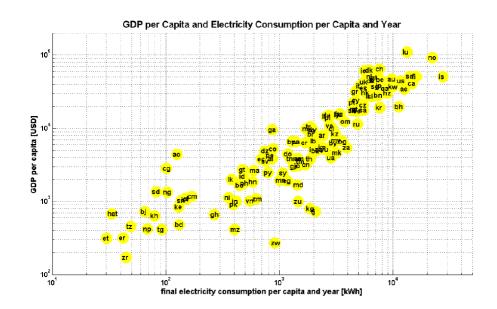
- Electricity access
- Population density
- GDP
- Tourism/industry

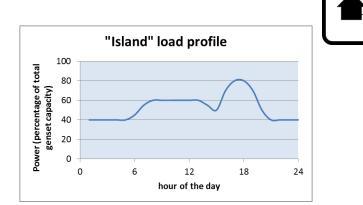
- Night Light Imagery, version 4 DMSP-OLS Night Lights Time Series, NOAA National Geophysical Data Center, US Air Force Weather Agency, Boulder, Colorado. LandScan 2011[™] High Resolution global Population Data Set, copyright UT-Battelle, LLC, operator of Oak Ridge National Laboratory under Contract No. DE-AC05-00OR22725 with the United States Department of Energy.
- Nelson , A., *Estimated travel time to the nearest city of 50,000 or more people in year 2000*, Global Environment Monitoring Unit Joint Research Centre of the European Commission, Ispra, Italy, 2008.
- Ghosh, T., Powell, R. L., Elvidge, C. D., Baugh, K. E., Sutton, P. C., Anderson, S., Shedding Light on the Global Distribution of Economic Activity. The Open Geography Journal, 3, 148 161, 2010.



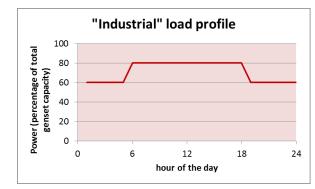
- Electricity access
- Population density
- GDP
- Tourism/industry

- Night Light Imagery, version 4 DMSP-OLS Night Lights Time Series, NOAA National Geophysical Data Center, US Air Force Weather Agency, Boulder, Colorado. LandScan 2011[™] High Resolution global Population Data Set, copyright UT-Battelle, LLC, operator of Oak Ridge National Laboratory under Contract No. DE-AC05-00OR22725 with the United States Department of Energy.
- Nelson, A., Estimated travel time to the nearest city of 50,000 or more people in year 2000, Global Environment Monitoring Unit - Joint Research Centre of the European Commission, Ispra, Italy, 2008.
- Ghosh, T., Powell, R. L., Elvidge, C. D., Baugh, K. E., Sutton, P. C., Anderson, S., Shedding Light on the Global Distribution of Economic Activity. The Open Geography Journal, 3, 148 161, 2010.

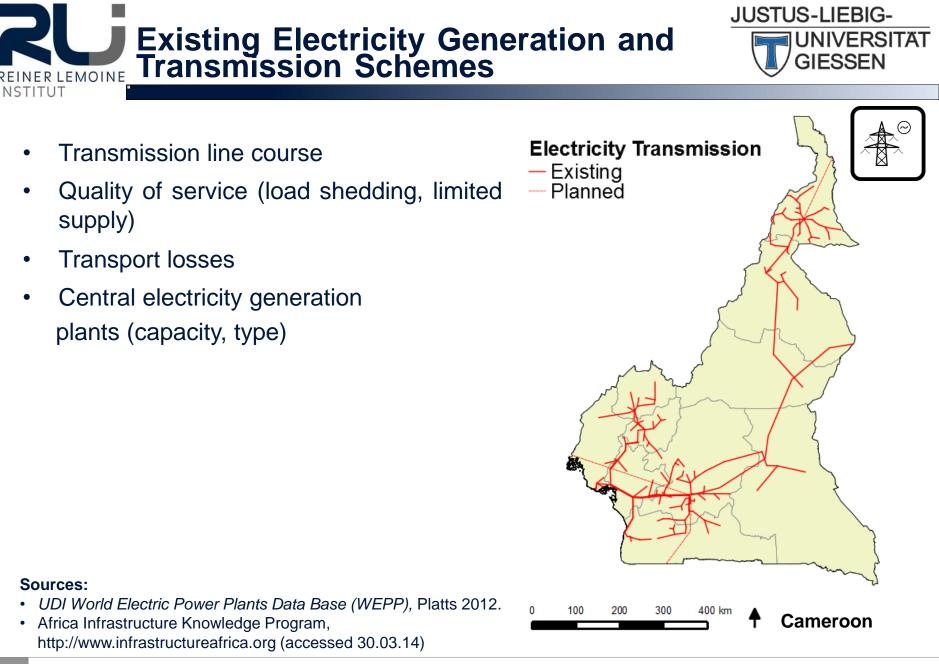


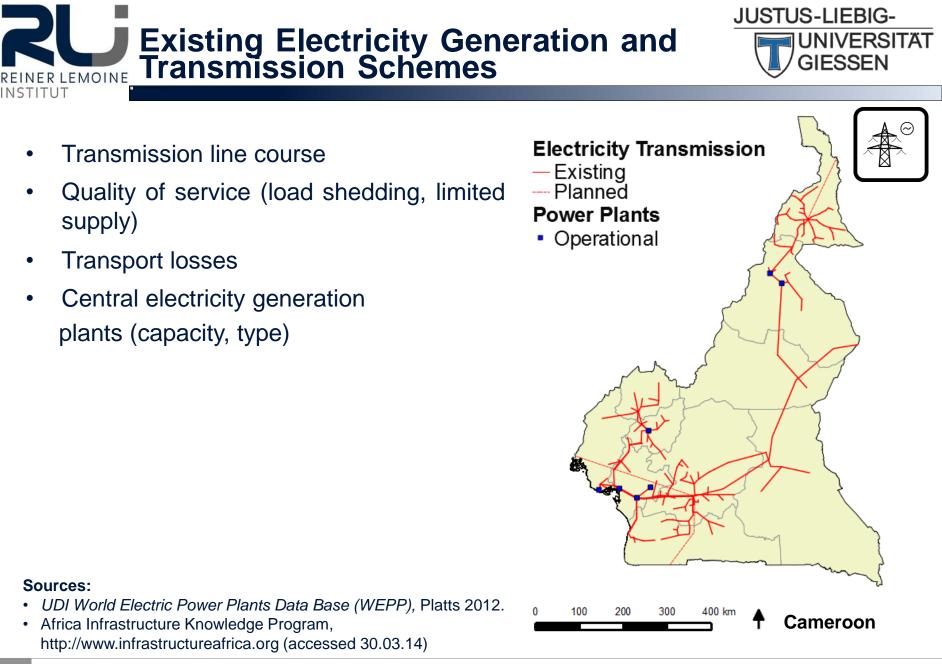


- Electricity access
- Population density
- GDP


22

Tourism/industry


Typical rural/island load profile.

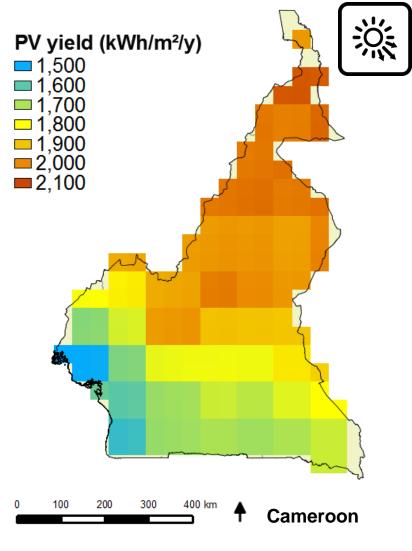

Typical industrial load profile.

Comparison of Off-Grid Electrification versus Grid Extension catherina.cader@rl-institut.de

Comparison of Off-Grid Electrification versus Grid Extension catherina.cader@rl-institut.de

Comparison of Off-Grid Electrification versus Grid Extension catherina.cader@rl-institut.de

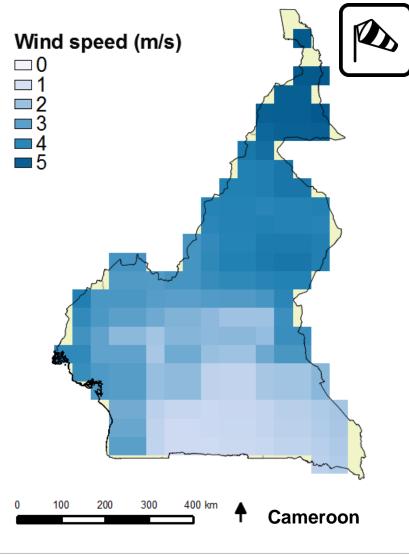
- Solar irradiation
- Wind speed
- Hydro power potential (Digital elevation model (DEM) + rivers)
- Land cover



25

- NASA & Deutsches Zentrum für Luft- und Raumfahrt (DLR)
- Jarvis, A., H.I. Reuter, A. Nelson, E. Guevara, 2008, Holefilled SRTM for the globe Version 4, available from the CGIAR-CSI SRTM 90m Database: http://srtm.csi.cgiar.org.
- GlobCover 2009 ESA

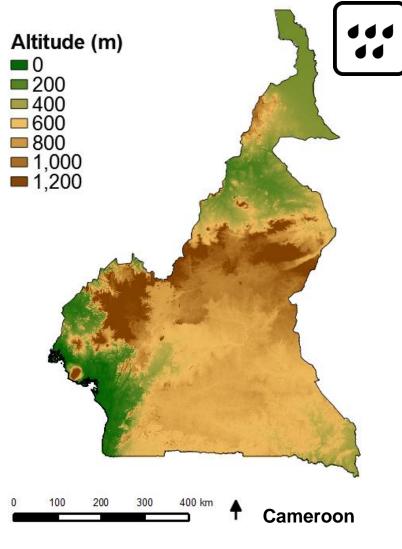
Comparison of Off-Grid Electrification versus Grid Extension


- Solar irradiation
- Wind speed
- Hydro power potential (Digital elevation model (DEM) + rivers)
- Land cover

26

- NASA & Deutsches Zentrum für Luft- und Raumfahrt (DLR)
- Jarvis, A., H.I. Reuter, A. Nelson, E. Guevara, 2008, Holefilled SRTM for the globe Version 4, available from the CGIAR-CSI SRTM 90m Database: http://srtm.csi.cgiar.org.
- GlobCover 2009 ESA

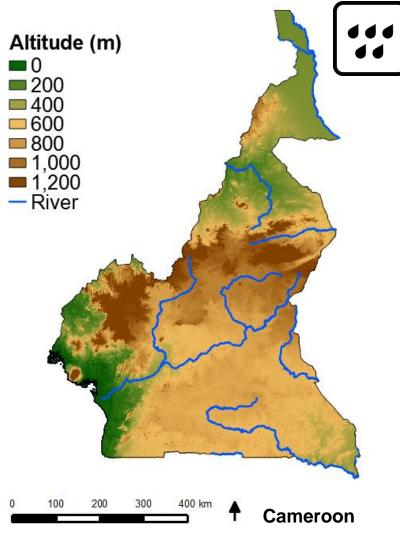
Comparison of Off-Grid Electrification versus Grid Extension catherina.cader@rl-institut.de


JUSTUS-LIEBIG-UNIVERSITAT GIESSEN

- Solar irradiation
- Wind speed
- Hydro power potential (Digital elevation model (DEM) + rivers)
- Land cover

- NASA & Deutsches Zentrum für Luft- und Raumfahrt (DLR)
- Jarvis, A., H.I. Reuter, A. Nelson, E. Guevara, 2008, Holefilled SRTM for the globe Version 4, available from the CGIAR-CSI SRTM 90m Database: http://srtm.csi.cgiar.org.
- GlobCover 2009 ESA

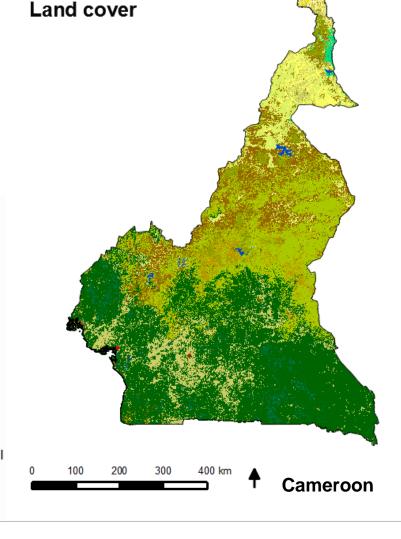
JUSTUS-LIEBIG-UNIVERSITAT GIESSEN


- Solar irradiation
- Wind speed
- Hydro power potential (Digital elevation model (DEM) + rivers)
- Land cover

28

- NASA & Deutsches Zentrum f
 ür Luft- und Raumfahrt (DLR)
- Jarvis, A., H.I. Reuter, A. Nelson, E. Guevara, 2008, Holefilled SRTM for the globe Version 4, available from the CGIAR-CSI SRTM 90m Database: http://srtm.csi.cgiar.org.
- GlobCover 2009 ESA

Comparison of Off-Grid Electrification versus Grid Extension catherina.cader@rl-institut.de



JUSTUS-LIEBIG-UNIVERSITÄT GIESSEN

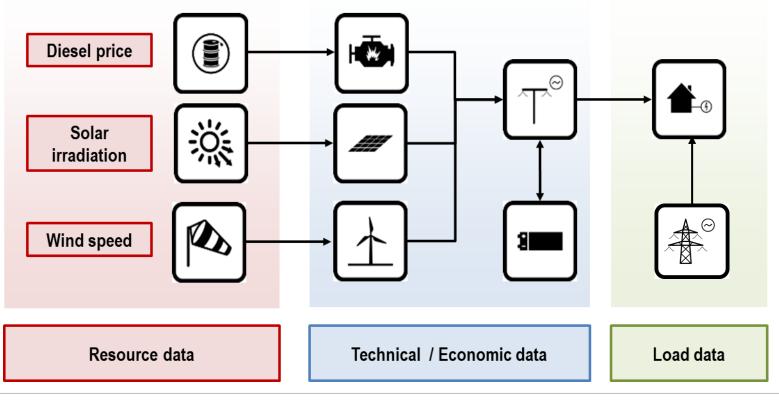
- Solar irradiation
- Wind speed
- Hydro power potential (Digital elevation model (DEM) + rivers)
- Land cover

Comparison of Off-Grid Electrification versus Grid Extension

- Policy structures (e.g. electrification objectives, renewable energy targets)
- Investment incentives (e.g. PPAs)
- Ownership structure of power plants and transmission line infrastructure, utilities, and regulation authorities
- Attractiveness for investors (e.g. ease of doing business index, corruption index)
- Financial parameters

- A spatial approach is necessary to understand the dynamics between energy demand clusters, resources, distances to overcome etc.
- Only with this knowledge it is possible to assess the most economical strategy to provide electricity to rural non-supplied areas.

The spatially distributed nature of renewable energy resources calls for their local usage, especially for remote, small clusters of electricity demand.


GIS Analysis, Energy system modelling and grid extension modelling allow an estimation of costs for rural electrification, to thereby suggest a local and environmental specific solution.

For a given set of input parameters (resources, technical characteristics, load data, ...) a cost optimized hybrid configuration is calculated (PV, wind, diesel, battery).

The model is developed in house and is modular, fast, and highly automatable.

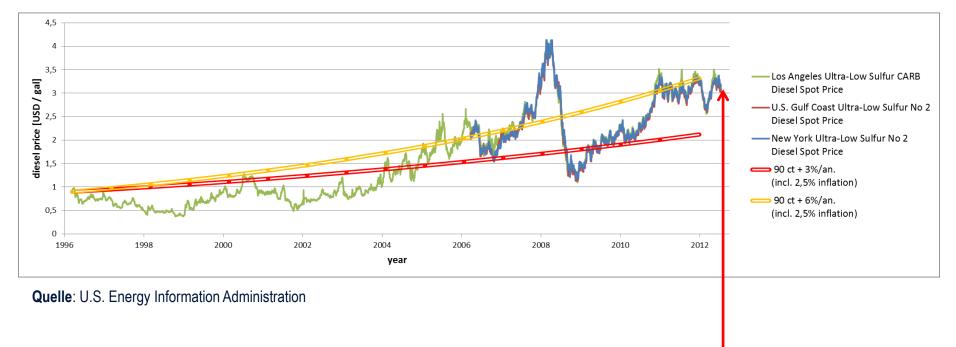
Comparison of Off-Grid Electrification versus Grid Extension

Thank you!

Appendix

36

RE Hybrid Electrification options



Category	Unit	Comment
Diesel only	EUR/kWh	Detailed modelling
Single RE technologies (PV, wind)	EUR/kWh	Detailed modelling
Hybrid Mini-Grids (LCOE) (Solar, wind, battery, diesel)	EUR/kWh	Detailed modelling
Optimized solution: capacities, RE share, diesel consumption	kW of each technology	Optimization
Optimized solution: RE share	%	Optimization
Optimized solution: diesel consumption	liter/year	Optimization
Solar-Home-Systems (LCOE)	EUR/kWh	Detailed modelling
Electricity demand	kWh/year	Detailed modelling
Distance to grid	km	GIS analysis
Nightlights (access to electricity)	yes/no	GIS analysis
Cost of grid extension	EUR/km	Detailed modelling / GIS analysis

Diesel price history (excluding taxes)

Average 2012: 3,1 USD / gal = 0,63 EUR / I (@ 1 EUR = 1,30 USD)

- Historische & aktuelle Betrachtungen:
 - Idee eines universellen globalen Netzes ("Supergrid")
 - Nationale Netze auf Länder und Verbundebene
 - Desertec-Approach (Transport von EE)
 - Mini-Grid Approach (dezentrale Erzeugung & Verbrauch remote Village-Ebene)
 - Offgrid-Approach (dezentrale Erzeugung & Verbrauch Haushaltsebene)

• Einzelfallbetrachtungen:

- Wo machen off-grid/mini-grid Systeme mit einem erneuerbaren Energieanteil Sinn?

Stromtrassenplanung

- Wo ist es auch geographisch-topoligischer Sicht am kostengünstigesten
 Stromtrassen zu planen? Was bedeutet das f
 ür die Definition von off-grid Gebieten
- Welche Rolle spielt die Entlegenheit von Regionen

Entwicklungspläne und Policies

 Gewisse Targets werden gesetzt, ohne fundiertes Hintergrundwissen über Einflussgrößen und Parameter zu besitzen

Forschung zu hybriden dezentralen Systemen